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Abstract 
 
 
I determine the optimal trading strategy for an institutional trader who wants to purchase a large 
number of shares over a fixed time horizon. First, I consider the case when limit orders can be 
used as well as market orders. I develop a simple binomial model where limit orders either 
execute or not. I find that the optimal sequence of limit orders involves small changes in price 
aggressiveness from node-to-node over a binomial tree. That is, if a given limit order executes 
(or not), then the next limit order optimally has a slightly less (more) aggressive price. I find that 
this trading strategy beats the benchmark trading strategy from the existing literature nearly all of 
the time and ties it in one special case. Second, I consider the case where trading algorithms can 
depend on a rich set of state variables. I develop a rich simulation model of trader who tries to 
satisfy the trading request of a fund manager. I model a pure limit order book exchange and 
allow the trader to select from a wide range of trading algorithms. I calibrate the simulation to 
real-world summary statistics based on order data. I find that if the fund manager is 
opportunistic, then the optimal algorithm involves only limit orders with low price 
aggressiveness. Conversely if the fund manager is committed, then limit orders should be 
followed by market orders at the end. I find that if the fund manager is informed and not using 
effective spread to measure the cost of trading, then market orders should be front-loaded in 
time. Conversely, if effective spread is used or if the fund manager is uninformed, then less 
aggressive orders should be spread evenly over time.  
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 Consider an institutional trader who wishes to buy 100,000 shares of a given stock over a 

trading day. What orders should the trader submit? There are many choices. First is the choice of 

order type: market order versus limit order.1 A market order that will get the shares requested, 

but at a higher cost. A limit order will cost less if it executes, but it may not execute. Second, if a 

limit order is used, then there is a choice of price. A higher limit buy price will be more likely to 

execute, but a lower limit buy price is a better price. Third is the choice of order size. Should the 

trader submit a smaller number of big orders or a larger number of small orders? Fourth is the 

choice of dynamic strategies. If new information arrives, should the unexecuted portion of a limit 

order be cancelled and resubmitted at an updated price? Since market orders pay the spread, 

should one strategically wait for moments when the spread is relatively small? And there are 

many more dynamic strategies that one could imagine. 

 In a seminal article that began the optimal execution literature, Bertsimas and Lo (1998) 

consider a risk-neutral institutional trader who wishes to buys S  shares in T periods. The trader 

is allowed to submit market orders. Trades have a temporary price impact, meaning that a larger 

trade causes the price to deviate more from its fundamental value. The trader’s objective function 

is to minimize total trading costs. They show that the “naïve strategy,” trading an equal amount 

per period  S T , is optimal under the special circumstances that price changes have a zero 

mean and are normally distributed. More generally they find the analytical solution for the 

optimal sequence of trades: (1) when price changes are lognormally distributed, (2) when there is 

an autoregressive state variable for “market conditions,” and (3) for the natural generalization to 

trading portfolios. 

                                                 
1 A market order is a request to buy or sell a specific quantity of shares at available market price(s). A limit order is 
a request to buy or sell at a specified price as many shares as possible up to desired quantity. 
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 Gatheral and Schied (2012) provides an excellent review of the optimal execution 

literature.2 Almgren and Chriss (2001) consider an institutional trader with a mean-variance 

objective function whose trades cause both temporary and permanent price impacts. They find 

that the trader should frontload trading in earlier periods to reduce risk. Harris (1998) is closest 

to this paper. He considers a trader who can submit a limit or market order at multiple points in 

time. The trader’s goal is to purchase a single unit of the security. Harris finds that it is optimal 

for a trader to start with a limit order, then if it fails to execute become more aggressive over 

time, and then if it still fails to execute by the end submit a market order to guarantee execution.3 

The trading strategy of becoming increasingly aggressive in price over time is taken as the 

benchmark from the existing literature. 

 I consider two research questions. First, when limit orders can be used as well as market 

orders, is it possible to beat the benchmark trading strategy from the existing literature? Second, 

when a trading algorithm can depend on a rich set of state variables, is it possible to beat existing 

trading algorithms in the literature? 

 To answer these questions, I develop two models. First, I develop a simple binomial 

model. In this model trading is done with unit-sized limit orders and market orders. The model is 

binomial in the sense that orders either execute or don’t. Since all orders are unit-sized, there is 

no case of partial execution. I find the analytic solutions for the optimal trading strategy for both 

single-period and multiple-period problems. Importantly, I find that the optimal sequence of limit 

                                                 
2 Important papers in optimal execution literature include Harris (1998), Huberman and Stanzl (2000), Almgren and 
Chriss (2001), He and Mamaysky (2001), Dubil (2002), Almgren (2003), He and Mamaysky (2005), Obizhaeva and 
Wang (2005), Ly, Mnif, and Pham (2007), Rogers and Singh (2008), Forsyth (2009), Kharroubi and Pham (2009), 
Schied and Schoneborn (2009), Rosenthal (2010), Alfonsi, Fruth, and Schied (2010), Guilbaud, Mnif, and Pham 
(2010), Gatheral and Schied (2010), Ankirchner and Kruse (2011a), and Ankirchner and Kruse (2011b). 
3 Harris and Hasbrouck (1996) discuss the idea that a patient liquidity trader might begin by submitting a limit order, 
and if need be, switch to a market order at the end. Handa and Schwartz (1996) analyze a limit order first and market 
order last strategy compared to a market order first strategy. 
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orders involves small changes in price aggressiveness4 from node-to-node over a binomial tree. 

That is, if a given limit order executes (or doesn’t), then the next limit order optimally has a 

slightly less (more) aggressive price. This trading strategy beats the benchmark trading strategy 

nearly all of the time and ties it in one special case. 

 Secondly, I develop a rich simulation model of a trader who tries to satisfy the trading 

request of a fund manager. I model of a pure limit order book exchange and allow the trader to 

select from a wide range of trading algorithms. The model is wide-open. Orders of any type and 

size can be submitted. Prices are on a discrete penny grid. Unexecuted limit orders can be 

cancelled at any time. Trading algorithms can depend on a wide variety of state variables such as 

bid, ask, midpoint, bid depth, ask depth, order arrival from other traders, order type from other 

trades, order size from other traders, own quantity executed so far, number of periods remaining, 

lagged values of everything, etc. A given trading algorithm could potentially depend on dozens 

of state variables.5 I calibrate the simulation to real-world summary statistics for order arrival, 

order size, and intraday price volatility. For each trading problem, I test a wide variety of trading 

algorithms with a large number of iterations for each algorithm. I determine the optimal trading 

algorithm for a wide variety of trading problems.  

 I find that if the fund manager is opportunistic, then the optimal algorithm should use 

only limit orders with low price aggressiveness, because these are the only trades that will 

immediately be profitable. Conversely, if the fund manager is committed, then the optimal 

algorithm uses limit orders followed by market orders at the end, because the market orders will 

guarantee purchasing the request amount. I find that if the fund manager is informed and 

performance is not measured using effective spread, then the optimal algorithm uses market 

                                                 
4 For limit buy (sell) orders, a higher (lower) price is more aggressive. 
5 For comparison, Bertsimas and Lo (1998) obtain an analytic solution based on two state variables. 
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orders that are front-loaded in time so as to trade before prices move in the predicted direction. 

Conversely, if performance is measured using effective spread or if the fund manager is 

uninformed, then the optimal algorithm uses less aggressive orders spread evenly over time. The 

reason is that under effective spread the benchmark is the contemporaneous quote midpoint, 

which moves up or down with the price, so there is no penalty to trading later in the day. Also, if 

the fund manager is uninformed, then there isn’t any predicted direction of prices to avoid. 

 This paper is also related to two other literatures. First, it is related to the empirical 

literature on how institutional traders implement trading requests.6 Second, it is related to the 

theoretical literature on limit order book exchanges in equilibrium.7  

 The paper is organized as follows. Section 1 develops a simple binomial model of trading 

using limit orders and market orders, solves it analytically, and determines if the optimal trading 

strategy beat existing trading strategies from the academic or practitioner literature. Section 2 

develops a rich simulation of model of trading on a pure limit order book exchange, calibrates it 

to real-world summary statistics based on order data, and numerically determines if it is possible 

to beat existing trading algorithms from the academic or practitioner literature. Section 3 

concludes. The appendix contains all proofs. 

1.  A Simple Binominal Model 

1.1  The Single-Period Version 

I develop a simple binomial model of a pure, open limit order market. This type of 

market structure is used by NYSE-ARCA, BATS, Direct Edge, the Tokyo Stock Exchange, 

Euronext, and many other exchanges around the world. This simple model provides insight and 

                                                 
6 See Irvine, Lipson, and Puckett (2007), Conrad, Johnson, and Wahal (2003), Domowitz, Glen, and Madhavan 
(2001), Keim and Madhavan (1995, 1996, 1997), Handa and Schwartz (1996), Harris and Hasbrouck (1996), Angel 
(1995), and  Lakonishok, Schleifer, and Vishny (1992). 
7 See Rosu (2009), Goettler, Parlour, and Rajan (2005, 2009), Parlour and Seppi (2008), Foucault, Kadan, and 
Kandel (2005), Foucault (1999), Chakravarty and Holden (1995), and Glosten (1994). 
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intuition into optimal trading strategy that carries over to the rich simulation model in the next 

section of the paper. 

I begin with a single-period version. The initial limit order book for a given stock is 

empty. A single seller wishes to trade with a single buyer. Both traders need to set a limit order 

price. By convention, the seller is exogenous. The seller submits a limit sell order at a limit sell 

price s  for one unit of the asset. The limit sell price s  is drawn from an uniform distribution 

over the continuous interval  ,v d v d  , where v  is the public value of the stock and d  

specifies the dispersion of potential prices. The buyer is endogenous. The buyer submits a limit 

buy order at a limit buy price b  for one unit of the asset. He chooses the limit buy price b  from 

the same the continuous interval  ,v d v d  . Define limit buy price aggressiveness ,a  as the 

excess of the limit price above the public value, .a b v   

Both orders are submitted simultaneously. Both orders execute in full when s b  and 

both fail to execute when s b . It immediately follows that the limit buy’s probability of 

execution p  is the probability that s b , which is 

 
 

    2

b v d b v d
p

v d v d d

   
 

  
.                                         (1) 

This way of modeling a limit buy captures the key property that a higher buy price b  increases 

the probability of execution p . At the extreme, a buy price of v d  yields a 100% probability of 

execution. I interpret this case as a market buy order.8 For simplicity, I adopt the convention that 

the two orders execute at the buy price b .9  

                                                 
8 Equivalently, this can be interpreted as a marketable limit buy. The simple binomial model does not distinguish 
between a market buy and a marketable limit buy. 
9 It is easy to show that the results of the model are qualitatively similar for the alternative convention that they 
execute half the time at the buy price and half the time at the sell price. 
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The buyer wishes to minimize his expected disutility  E D  at the end of the period. If 

the limit buy executes, then he receives disutility from the cost of trading b v , the excess price 

paid relative to the public value v .10 If the limit buy fails to execute, then he receives a disutility 

penalty ,k  which represents the buyer’s degree of unhappiness for failing to obtain the desired 

amount. The buyer’s decision problem is to choose the limit buy price b  so as to minimize his 

expected disutility 

      1
b

Min E D p b v p k    .                                           (2) 

A higher b  increases p  which reduces the chance of receiving the disutility penalty k  

for failing to execute. The tradeoff is that a higher b  increases the cost of trading b v  when 

execution happens. The proposition below gives the analytic, single-period solution. 

Proposition 1. If 3k d , then the optimal limit price aggressiveness is 

 1

2
a k d d   ,                                                         (3) 

the corresponding probability of execution is 

1
4

k d
p

d


   ,                                                              (4) 

and the corresponding expected disutility is 

 
2 26

8

dk d k
E D d

d

 
  .                                                   (5) 

If 3k d , then the optimal limit price aggressiveness is a d , the corresponding probability of 

execution is 1p  , and the corresponding expected disutility is   .E D d  

                                                 
10 This measure of the cost of trading is very similar to the effective half spread, which for buy trades is defined as 
the trade price minus the quote midpoint. In this simple model, the cost of trading is equal to price aggressiveness, 
b v a  . In the rich simulation model in the next section, we will measure the cost of trading with four different 
metrics. 
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 The key driver of the optimal trading strategy is the failure penalty k . If the failure 

penalty is low enough  3 ,k d  then the optimal order submission is a limit buy with an interior 

optimum price aggressiveness .a d  The price aggressiveness is increasing in the failure penalty 

k and decreasing in the dispersion d. Conversely, if the failure penalty is high enough  3 ,k d  

then the optimal order submission is a market buy at the corner solution price aggressiveness 

.a d  

1.2  The Multi-Period Version 

Now I extend the simple binomial model to a multi-period version. There are T order 

submission times 1, 2, ,t T  and a terminal time 1T  .11 Let tv  be the public value of the stock 

at time t. This public value is conditional on all public information at time t, including the history 

of all prior trades and quotes in the stock. Let next time’s public value be given by 1 1t t tv v    , 

where 1t   is next time’s innovation the pubic value  and is common knowledge. 

At any node on the tree, a single exogenous seller wishes to trade immediately. At time t , 

the seller submits a limit sell at a sell price ts  for one unit that expires after one time period. The 

limit sell price ts  is drawn from an uniform distribution over the continuous interval 

 ,t tv d v d  . Again, the limit buy price aggressiveness ,t na  is defined as the excess of the limit 

price above the public value, , , .t n t n ta b v   

A single endogenous long-lived buyer wishes to purchase N  units by the terminal time 

1T  . Since there is only one unit available for sale at a given time, this will require the 

execution of N  limit or market buy orders of one unit each. We constrain N T  so that it is 

                                                 
11 In principle, T could be arbitrarily large. There could be so many periods that one period could represent one 
second or even one millisecond. 
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feasible in some state of nature to purchase the desired quantity. We also impose the 

economically sensible non-negativity constraints 0,  0,d N   and t 0v d   at all times.  

Consider a buyer who at time t has already succeeded in purchasing n  units. At the  ,t n  

node of a binomial tree, the buyer cancels any unexecuted limit buy from the previous time12 and 

submits a new limit buy order at a buy price ,t nb  for one unit. He chooses ,t nb  from the same 

interval  ,t tv d v d   as the contemporaneous seller.  

Both orders are submitted simultaneously. Both orders execute in full when ,t t ns b  and 

both fail to execute otherwise. The limit buy’s probability of execution ,t np  is the probability 

that ,t t ns b , which is given by 

 
 

   
, ,

, 2
t n t t n t

t n
t

b v d b v d
p

v d v d d

   
 

  
.                                     (6) 

The long-lived buyer’s disutility function at the terminal  1,T n  node is 

  1, 1        for 0,1, ,T n TD TCT k N n n N      ,                        (7) 

where 1TTCT   is the total cost of trading prior to time 1T   (which includes the final trading 

time T) and the second term is the trader’s degree of unhappiness due to the quantity shortfall 

N n . 

 Let ,t nJ  be the long-lived buyer’s derived disutility function at the  ,t n  node. By 

dynamic programming, the decision problem at the  ,t n  node is given recursively by 

                                                 
12 In the simple binomial model, canceling any unexecuted limit buy always leaves the buyer either better off or 
indifferent compared to having two limit buys outstanding at the same time. To see this, recall that only one unit is 
available for sale in any period and thus, it is not possible for two buy orders to execute in the same period. Further, 
if the prior buy price is higher than the current period optimal buy price, then the prior buy is too high and the buyer 
is better off by canceling it. If the prior buy price is lower than the current optimal buy price, then the prior buy price 
is dominated and the buyer is indifferent to its existence. So in the latter case, we adopt the tie-breaking convention 
that he cancels it. 
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,
, , 1,

t n
t n t n t n

b
J Min E J     .                                                               (8) 

where n  is the random number of units purchased through the next time 1t   and 1, 1,T n T nJ D 

for all values of n. At any given  ,t n  node, if n N , then an order will be submitted that will 

either execute or not. However, if n N , then no order will be submitted since the full desired 

quantity has already been purchased. Thus, derived disutility ,t nJ  at the  ,t n  node can be 

written as 

 
,

,

, 1, 1 , 1,

, , 1,

 1 if 

                                        if .
t n

t n

t n t n t n t n
b

t n t n t n
b

t

Min p J p J n N
J Min E J

TCT n N

  



       


                         (9) 

In the case that n N , the absence of further orders means that the current derived utility equals  

the terminal disutility, which also equals the total cost of trading that has already been realized 

prior to the current date tTCT  and no penalty due to quantity shortfall.  

In the case that n N , we can write the derived disutility as the expected value of 

terminal disutility under the optimal trading strategy as determined recursively backwards by 

dynamic programming. In the event that the time t order executes, then the updated expected 

value of terminal disutility is 

  1, 1 , 1, 1 1, 1( 1)t n t t n t t n t nJ TCT b v f k N n h             ,                           (10) 

where tTCT  is the total cost of trading prior to time t, ,t n tb v  is the increment to the total cost of 

trading caused by the time t order executing, 1, 1t nf    is defined as the expected future addition to 

the total cost of trading starting from the  1, 1t n   node, and 1, 1t nh    is defined as the expected 

number of units to be purchased in future trades starting from the  1, 1t n   node. Both 1, 1t nf    

and 1, 1t nh    are the forecasted outcome of future trades under the optimal trading strategy. 
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In the event that the time t order doesn’t execute, then the updated expected value of 

terminal disutility is 

  1, 1, 1,t n t t n t nJ TCT f k N n h       ,                                                  (11) 

where 1,t nf   and 1,t nh   are defined analogously starting from the  1,t n  node.  

Again there is a trade-off. A higher buy price ,t nb  increases the probability of execution 

,t np which reduces the chance of receiving the disutility penalty for a quantity shortfall, but it 

increases the increment to the total cost of trading ,t n tb v  when execution does happen. The 

proposition below gives the analytic, multi-period solution. 

Proposition 2. The solution is specified by binomial trees for ,  ,  ,  and .a p f h  At the  ,t n  nodes 

of these trees where the trader is not done  n N , the optimal limit price aggressiveness is 

  , 1, 1, 1 1, 1 1,

1
, 1
2t n t n t n t n t na Min d f f k h h d     

        
,                                 (12) 

the probability of execution at the optimal limit buy price is 

,
, 2

t n
t n

a d
p

d


 ,                                                                   (13) 

the expected total cost of trading on future trades is 

   , , , 1, 1 , 1,1t n t n t n t t n t n t nf p b v f p f       ,                                          (14) 

and the expected number of units to be purchased in future trades is 

   , , 1, 1 , 1,1 1t n t n t n t n t nh p h p h      .                                                    (15) 

At the  ,t n  nodes of these trees where the trader is done  n N , no further orders will be 

submitted and so , , ,0,  0,  0,t n t n t nf h p    and ,t na
 

is undefined. For all terminal nodes, 
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1, 1,0,  and 0.T n T nf h     The   a and p  trees do not include the terminal date 1T  .
 
Further, a 

binomial tree for the derived disutility minus the total cost of trading prior to time t  ,t n tJ TCT  

is given by equations (9), (10), and (11). On the initial date, the total cost of trading before the 

first trade 1 0TCT   and so the first node (1,0) of this binomial tree yields the ex-ante derived 

disutility 1,0.J  

The binomial trees are calculated backwards from the last date to the first. Start at the 

date 1T   nodes for the f  and h  binomial trees (which are equal to zero), next calculate the 

date T  nodes for the a  and p  binomial trees using (12) and (13), then calculate the date T  

nodes for the f  and h  trees using (14) and (15), …, keep calculating the a  and p  trees first and 

then the f  and h  trees second on each date all the way back to date 1. Finally, the J TCT
 

binomial tree can be calculated from the ,  ,  ,  and a p f h  trees using (9), (10), and (11) starting at 

date T and working back to date 1.  

1.3  The Character of the Optimal Trading Strategy 

 A numerical example will help illustrate the character of the optimal trading strategy. 

Suppose that the long-live buyer wishes to purchase 4 units  4N   has 8 time periods  8T   

to do so. Further suppose that the remaining parameters are 0 $30.00,  $0.10,v d   and 

0.32.k   In this example, the failure penalty is high  3 .k d  

Figure 1 shows a binomial tree for the optimal limit price aggressiveness a  and a 

binomial tree for the probability of execution p . Starting at the (1,0) node of the upper tree, the 

optimal limit price aggressiveness on date 1 is 1,0 $0.00,a   meaning the date 1 limit buy price is 

set equal to the date 1 true value 1,0 1b v . Looking at the corresponding (1,0) node of the lower 
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tree, this order has a probability of execution
 1,0 50%p  . If this order fails to execute, then you 

go to the up-node (2,0) in both trees. At this node, you cancel the time 1 limit order and submit 

an optimal time 2 limit order with a slightly more aggressive price 2,0 $0.01a   (meaning a limit 

buy price 2,0 2 .01)b v  , which corresponds to a slightly higher probability of execution 

2,0 56%p  . However, if the time 1 order succeeds in executing, then you go to the down-node 

(2,1) in both trees. At this node, you submit an optimal time 2 limit order with a slightly less 

aggressive price 2,1 $0.01a    (meaning a limit buy price 2,1 2 .01b v  ), which corresponds to a 

slightly lower probability of execution 2,1 44%p  .  

I call this pattern of slightly higher price aggression on up-steps and slightly lower price 

aggression on down-steps “step-by-step aggressiveness.” That is, from any node if the current 

limit order fails to execute, then the next step at the up-node will optimally be at a slightly more 

aggressive price with a slightly higher probability of execution. Intuitively, the failure to execute 

makes the remaining problem more difficult (you have one less period to purchase the same 

number of units as before) and so you act more aggressively. Conversely, if the current limit 

order succeeds in executing, then the next step at the down-node will optimally be at a slightly 

less aggressive price with a slightly lower probability of execution. Intuitively, the success at 

execution makes the remaining problem less difficult (you have one less unit to purchase in the 

remaining time) and so you act less aggressively.  

Step-by-step aggressiveness characterizes nearly all of the 2T  possible paths that you 

might take over the binomial tree. For example, suppose your first four steps happen to be up, 

down, down, and up. Then, your price aggressiveness and probability of execution will slightly 

increase, decrease, decrease, and increase. 
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More specifically, step-by-step aggressiveness characterizes any path over the entire 

diamond-shaped zone with the yellow shading (light grey shading with solid borders in black and 

white) on the binomial trees. I call this area the Limit Order zone, because it turns out that it is 

always optimal to submit non-marketable limit orders  , 1t np   in this zone (see Proposition 4 

below). Specifically, the Limit Order Zone contains all  ,t n  nodes where the trader is not done 

 n N  and where there is a positive amount of slack time (i.e., more time periods left than 

remaining units to be purchased 1T t N n    ). The following proposition formally specifies 

this characterization. 

Proposition 3. In the Limit Order Zone, the optimal strategy exhibits step-by-step 

aggressiveness. That is, from any  ,t n node in this zone: 

 If the order fails to execute, then you go to the up-node  1,t n  where the optimal 

strategy is to cancel the unexecuted order and submit a new limit buy at a more 

aggressive price 1, ,t n t na a   with a higher probability of execution 1, ,t n t np p  . 

 If the order succeeds in executing, then you go to the down-node  1, 1t n   where the 

optimal strategy is to submit a limit buy at a less aggressive price 1, 1 ,t n t na a    with a 

lower probability of execution 1, 1 ,t n t np p   .  

To get a feel for step-by-step aggressiveness, take a look at the lower binomial tree for 

the probability of execution in Figure 1. You can readily see the probability of execution at any 

node in the Limit Order Zone is an intermediate value between the following two connected 

nodes. Formally, one can make a stronger statement. Part of the proof of Proposition 3 is to 
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prove that the probability of execution at any node where the trader is not done  n N  is a 

weighted average of the following two connected nodes 

 , , 1, 1 , 1,1t n t n t n t n t np w p w p     ,                                           (16) 

where the weight  , 1, 1 1, 2t n t n t nw p p    . Logically, if the  ,t n
 
node is in the middle, then 

one of the following connected nodes will have a higher probability of execution and the other 

will have a lower probability of execution. 

 An interesting case is when there have been four failures to execute in a row (the up-up-

up-up-node). This is the (5,0) node, where there are only four time periods left and there remains 

four units to be purchased. In other words, there is zero slack time. The only way to guarantee 

execution is with the “corner solution" strategy of submitting four market buys over the next four 

time periods. The optimal limit price aggression for these four orders is the maximum possible 

5,0a  6,1a  7,2a  8,3 $0.10a d   (meaning the most aggressive possible sequence of bid prices 

5,0 5 ,b v d   6,1 6 ,b v d   7,2 7 ,b v d   and 8,3 8 ).b v d   These market buys will execute with 

certainty 5,0p  6,1p  7,2p  8,3 100%p  . I call the upper right triangle with green shading 

(medium grey shading in black and white) of the binominal trees the “Market Order / Maximum 

Aggressiveness Zone.” The name describes the optimal trading strategy in this zone (see 

Proposition 4 below).13 

 Another interesting case is when there have been four successes in executing in a row 

(the down-down-down-down-node). This is the (5,4) node, where the entire desired quantity has 

already been purchased. Hence, no more orders are submitted and the probability that an order 
                                                 
13 When the failure penalty is high  3 ,k d the nodes above the SouthWest edge of the Market Order / Maximum 

Aggressiveness Zone are unreachable. To see this, consider the (5,0) node which is on the SouthWest edge. Here it 
is optimal to submit a market buy that is certain to execute 

5,0 100%.p 
 
Thus, it is certain that the trader will go to 

the down-node (6,1) next and cannot reach the up-node (6,0). 
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will be executed is zero 5,4 6,4 7,4 8,4 0%.p p p p     I call the lower right triangle with red 

shading (dark grey shading in black and white) of the binominal trees the “Done” zone.14  

Now consider an example where the failure penalty is low  3 .k d  Reduce the failure 

penalty to 0.28k   and keep the rest of the parameters the same: 4,N   8,T  0 $30.00,v   and 

$0.10.d   Figure 2 shows the binomial trees in this case. The main difference in this case is in 

the Market Order / Maximum Aggressiveness Zone. Here the optimal limit price aggression is 

less than the maximum possible ,t na d  (meaning the bid prices are less than the maximum 

possible , ).t n tb v d 
 
These non-marketable limit orders have a probability of execution less 

than 100%, and specifically in this case, , 95%.t np 
 
This limit order exhibits the Maximum 

Aggressiveness that is acceptable to this trader and it is greater than the aggressiveness of any 

order in the Limit Order Zone.15  

 Indeed, it is interesting that all of the nodes in this zone have a probability of execution 

which is identical to probability of execution for the same parameter values in single-period 

case. This makes sense when you consider that all of the nodes on the last trading date, (8,0), 

(8,1), (8,2), and (8,3), in fact only have one trading opportunity left and so logically the 

probability of execution  8,0 8,1 8,2 8,3 95%p p p p     must be the identical to the single-

period solution. Further, the remainder of nodes in this zone have two following connected nodes 

                                                 
14 The nodes below the NorthWest edge of the Done Zone are unreachable. To see this, consider the (5,4) node 
which is on the NorthWest edge. Here no more orders are submitted and so the probability that an order will be 
executed is zero 

5,4 0%.p   Thus, it is certain that the trader will go to the up-node (6,4) next and cannot reach the 

down-node (6,5). 
15 When the failure penalty is low  3 ,k d  the optimal limit orders in the Market Order / Maximum Aggressiveness 

Zone have a probability of execution of less than 100%. Hence, all of the nodes can be reached. 
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with a 95% probability of execution. Since all nodes are a weighted average of the following two 

connected nodes by equation (16), they must have the same 95% probability of execution.16  

The proposition below specifies that the character of the optimal solutions that we have 

discussed for these particular numerical examples holds in general. 

Proposition 4. The binomial trees for the optimal limit price aggressiveness and the probability 

of execution have three zones: 

1. A Limit Order Zone, where it is optimal to submit a non-marketable limit order.  

2. A Market Order / Maximum Aggressiveness Zone. In this zone, if the failure penalty is 

high enough  3k d , then it is optimal to submit a market order. Conversely, if the 

failure penalty is low enough  3k d , then it is optimal to submit a non-marketable 

limit order with higher price aggressiveness than any node in the limit order zone. 

3. A Done Zone where the trader is done  n N  and so no further orders are submitted. 

Under step-by-step aggressiveness, if the  ,t n  node order fails to execute, then the 

remaining trading problem is more difficult and thus requires a more aggressive strategy. 

Pursuing this reasoning, multiple failures to execute cause the trader to cross-over into a more 

aggressive zone, namely, the Market Order / Maximum Aggressiveness Zone. Intuitively, all 

of the slack time is gone and so the trader must act very aggressively. Conversely, N  

successes in executing cause in the trader to cross-over into a less aggressive zone, namely, 

the Done Zone. Here the trader adopts the least aggressive strategy possible: stopping trading.  

                                                 
16 The situation changes when we get to the limit order zone, because at least one of the following connected nodes 
has a lower probability of execution. For example, the (7,4) node in the limit order zone is connected to the (8,4) 
node with a 95% probability and to the (8,5) node with a 0% probability. The weighted average of these two 
following connected nodes yields a 50% probability for the (7,4) node. 
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Recall that the benchmark from the existing literature is becoming increasingly 

aggressive in price over time. Since this strategy is different that step-by-step aggressiveness 

strategy that Proposition 3 proves is optimal strategy, it must yield strictly higher (worse) ex-

ante expected disutility in nearly all cases. The one exception is the one that Harris (1998) 

considers, which can be viewed as a special case of the binomial model when only a single 

order is requested  1N   and the failure penalty is high  3k d . Figure 3 shows the 

binomial trees in this case. Here the optimal strategy begins by submitting a limit order at a 

low -$0.06 aggressiveness with an 18% chance of execution. If it executes, you are done. If 

not, the next limit order will be more aggressive with a 20% chance of execution. The pattern 

continues at each node going along the upper edge of the binomial tree. From each node, you 

will be done if your order executes or you will submit a more aggressive next time if it fails. 

In the last period, you submit a market order. In this special case, the optimal strategy exactly 

matches the benchmark from the existing literature, which is to become increasingly 

aggressive in price over time. Thus, it ties in ex-ante expected disutility in this one case. 

2.  A Rich Simulation Model 

2.1  Model Setup 

 Many institutional traders separate the “selection” task and the “implementation” task. 

For each fund (e.g., mutual fund, pension fund, endowment fund, etc.), there is a fund manager 

who decides what securities to buy and sell in what overall amounts at what times, which is 

called selection. The fund manager’s trading requests are sent to an “order desk” employee. This 

employee decides what order types at what order prices in what order sizes should be sent to 

what exchanges or broker-dealers at what times, which is called implementation.  
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 I develop a rich simulation model from the point of view of an order desk employee.  

This employee takes the fund manager’s request as given and tries to figure out the best way to 

implement the request so as to minimize the fund manager’s unhappiness. 

 The fund manager’s request is a request to buy specific quantity of a particular security 

expressed as a percentage of average daily volume.17 For example, a request to purchase 1% of 

average daily volume would be an easy request, whereas a request to purchase 30% of average 

daily volume would be a difficult request. Multiplying (Requested Buy as a percentage of 

Average Daily Volume) times (Average Daily Volume measured in round lots) yields the 

requested number of round lots N .18 

 There are two types of agents. One agent is the endogenous, long-lived order desk 

employee. The second class is exogenous, other traders who can submit a variety of orders.19  

The trading day is divided into 20 order submission times 1, 2, , 20t    that are 20 

minutes apart. Let T  be the fund manager’s order submission deadline to fulfill the purchase 

request and 1T   be a terminal valuation time after the deadline. For example, a fund manager’s 

deadline of 1T   (corresponding to 9:40 a.m.) would be very impatient, whereas a fund 

manager’s deadline of 20T   (corresponding to 4:00 p.m.) would be very patient.  

The two classes of agents alternate submitting orders. At time 1t  , other traders submit 

an order and then the order desk employee submits an order. At time 2t  , other traders submit 

an order and then the order desk employee submits an order. And so on until the deadline time 

                                                 
17 I only consider buy requests. Sell requests are incorporated implicitly as the mirror image of buy requests. I only 
consider requests to trade in a single security. Bertsimas and Lo (1998) show that portfolio requests are readily 
accommodated by accounting for the multivariate stochastic process across securities. 
18 One round lot is equal to 100 shares. 
19 Like the rest of the optimal execution literature, both of my models are based on individual optimality (that is, 
partial equilibrium). Compared to general equilibrium, the strength of this approach is its enormous generality. By 
calibrating the actions of other agents using real data, it does not impose strong assumptions about all agents in the 
economy, such as rationality, full understanding of distributions, sophisticated computational ability, etc. The 
inherent weakness of this approach is that it cannot address the interaction of multiple strategic agents. 
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t T , when other traders submit their final order by the deadline and then the order desk 

employee submits a final order by the deadline.  

The fund manager’s disutility function 1TD   at the terminal valuation time 1T   is 

 1 1 1
m

T T TD TCT k N n A      ,                                                (17) 

where 1
m

TTCT   is the total cost of trading at the terminal valuation time based on metric m 

(explained below), 1Tn   is the realized number of round lots purchased, A  is the fund manager’s 

risk aversion, and   is the standard deviation of trade prices. The second term is the fund 

manager’s degree of unhappiness due to a quantity shortfall (or overrun) 1TN n   and the third 

term captures the fund manager’s disutility due to execution price risk. 

 I incorporate four alternative metrics that are widely-used in practice for measuring the 

cost of trading m
kC  due to the thk  trade under metric m: 

     :     2ES
k k k kEffective Spread C I P M  ,

 
                                  (18)

  :     2IS
k k k ISImplementation Shortfall C I P M  ,                                   (19) 

      :     2VWAP
k k k VWAPVolume Weighted Average Price C I P P   ,                             (20) 

     :     2C
k k k CClosing Price C I P P  ,

 
                                     (21) 

where kI  is an indicator variable that equals +1 if the thk  trade is a buy and -1 if the thk  trade is 

a sell, kM  is the quote midpoint immediately before the thk  trade, ISM  is the quote midpoint at 

the time of fund manager’s request (interpreted as before the start of the trading day), VWAPP  is 

the weighted average trade price over the trading day as weighted by the volume of each trade, 

and CP  is the last trade price of the trading day. The total cost of trading over all trades 

1, 2, ,k K   that take place before the deadline is 
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   1 1
1

K
m m

T k IS C IS T
k

TCT C I M M N n 


    ,                                   (22) 

where ISI  is an indicator variable that equals +1 under Implementation Shortfall and 0 otherwise 

and CM  is quote midpoint at the close of the trading day. The second term is an extra 

opportunity cost component that is part of Implementation Shortfall (but not the other metrics), 

which measures the foregone profits (or losses) on the quantity shortfall (or overrun)  1 .TN n   

I incorporate the possibility that the fund manager may be informed. Let s  be the fund 

manager’s private signal prior to the trading day about the terminal value of the security and let 

1s v  be the difference between that signal and the time 1 public value of the security. Let 

1 1Tv v   be the cumulative innovation in the pubic value of the security from time 1 to time T+1. 

Define the fund manager’s information   as the correlation between signal difference 1s v  and 

the cumulative innovation 1 1.Tv v   For example, a fund manager’s information 0   would be 

uninformed, whereas a fund manager’s information 1   would be perfectly informed.  

When the fund manager is unformed, the public value innovations are equally likely to be 

positive or negative. Conversely, if the fund manager is truly informed and choose to request 

buying, then it must been because the fund manager’s signal was of good news (i.e., the signal 

difference is positive 1 0).s v   Under perfect information  1   the fund manager’s good 

news signal must have been correct, and so in this case, the public value innovations are strictly 

positive.20 

                                                 
20 A fund manager who is truly informed and gets a signal of bad news which leads to a sell request is incorporated 
implicitly as the mirror image of a signal of good news leading to a buy request. In the mirror image case under 
perfect information  1   the fund manager’s signal must have been correct and so public value innovations 

would be strictly negative. 
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Like the simple binomial model, the rich simulation is a model of a pure, open limit order 

market. Unlike the previous model, the initial limit order book is not empty.  

The order desk employee has a rich set of orders to choose from. Each period either a 

market order or a limit order may be submitted. A limit order may have any limit price as 

selected from a discrete price grid with penny increments. A market or limit order may be for 

any integer amount of round lots. At any time you may simultaneously cancel the unexecuted 

limit orders and submit an updated market or limit order.  

2.2  Model Calibration 

In the model, I have calibrated the actions of other traders to real-world summary 

statistics based on order data. On Nov 15, 2000, the Securities and Exchange Commission (SEC) 

adopted Rule 60521 that mandated the disclosure monthly summary statistics by each exchange 

(or other market center) by each individual stock based on order data. I selected the Better 

Alternative Trading System (BATS) exchange to calibrate to because its market structure is a 

pure, open limit order book just like my model. As a starting point, I selected Microsoft stock to 

calibrate to. I intend to investigate a variety of other stocks as well. I selected data for the month 

of December 2011. 

Table I shows the calibrated inputs to the simulation. Panel A shows the probability of 

various order types. The Rule 605 data shows that market orders and marketable limit orders 

represent 61.5% of all Microsoft orders on BATS. So I assigned 30.75% to market buys and 

30.75% market sells. Conversely, non-marketable limit orders represent 38.5% of all Microsoft 

orders on BATS. So I assigned 19.25% for (non-marketable) limit buys and 19.25% for (non-

marketable) limit sells. 

                                                 
21 It was formerly named Rule 11Ac1-5. 
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Panel B shows the probability of order size by order type. The Rule 605 data reports the 

total shares for market orders and marketable limit orders. I divided the monthly figure by 21 

trading days in December 2011 and by 20 intervals per day to obtain 230.4 round lots per 20-

minute period. I assigned probabilities to various market order sizes to obtain an average size of 

230.4 round lots. Similarly, the total share for non-marketable limit orders were divided by 21 

and then by 20 to obtain 276.7 round lots per 20-minute period. I assigned probabilities to 

various (non-marketable) limit order sizes to obtain an average size of 276.7 round lots. 

Implicitly, the average calibrated order in the simulation represents the aggregate quantity over a 

20-minute interval. 

 Panel C shows the probability of price changes. I selected New York Stock Exchange 

(NYSE) Trade and Quote (TAQ) data for Microsoft in December 2011 and sampled trade prices 

every 20 minutes. To determine the intraday volatility, I computing the mean absolute deviation 

of the 20-minute prices as 0.033. I assigned probabilities to public value innovations such that 

the mean absolute deviation was 0.033. Finally, out of all Microsoft non-marketable limit orders 

on BATS, 0.0% were inside-the-quote, 87.4% were at-the-quote, and 12.6% were behind-the-

quote. To approximately capture this distribution, I assigned a probability of non-negative limit 

price deviation to be 0.0%, the probability of -$0.01 limit price deviation to be 87.4%, and the 

probability of a -$0.02 and -$0.03 limit price deviation to add up to 12.6%. 

2.3  Model Testing 

 The rich simulation model provides a wide variety of state variables that may be relevant 

to trading algorithms. I test a wide range of trading algorithms. Table II describes the 46 

algorithmic trading strategies tested. They fall into groups as follows: 
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 Strategies 1‐3, 7‐9, 31‐33, 37‐39. Limit buys are used at varying limit prices relative to the bid (bid‐

$0.01, bid, bid+$0.01) and with varying cancellation (none, every 12 periods, every 4 periods) 

 Strategies 4‐6. Market buys are used in varying sizes (few large, many small, lots of tiny) 

 Strategies 10‐12, 16‐18. Market buys  in fixed amounts or tied to the ask depth are only submitted 

when the spread is less than various cutoffs ($0.08, $0.06, $0.04) and no conditions are imposed in 

the last 5 periods 

 Strategies  13‐15,  34,  40. Medium  limit  buys  are  used with  varying  time‐patterns  (front‐loaded, 

evenly spread, back‐loaded) and varying limit prices relative to the bid (bid‐$0.01, bid, bid+$0.01) 

 Strategies 19‐30. Limit orders are submitted with step‐by‐step varying price aggressiveness relative 

to the bid  or relative to the midpoint (“absolute price aggressiveness”) with size variations (1/3, 1/4, 

1/5 of requested lots) and zone variations (normal or large); all end with a market buy 

 Strategies  35,  36,  41‐46. Medium  limit  buys with  a more  aggressive  price  relative  to  the  bid  or 

relative to the midpoint (“absolute price aggressiveness”) when there are various number of periods 

left (4, 6, 8); all end with a market buy. 

 The strategies above were tested on a wide range problems. I varied the requested buy 

amount as a percentage of daily volume (10%, 50%, 100%),  the deadline (2 periods, 10 periods, 

and 20 periods), the failure penalty (none = 0.00, medium = 0.50, and high = 1.00), fund 

manager risk aversion (none = 0, medium = 100, high = 1,000), fund manager information (none 

= 0, medium = 0.50, and high = 1.00), and performance metric (effective spread, implementation 

shortfall, volume-weighted average price, and closing price). Combining all of the variations, I 

tested 972 problems.  

 For each iteration of the simulation, there are four random variables that must be updated 

for each of the 20 time periods, plus a few more one-time random variables, for a total of 87 
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random variables. For each problem, I tested each strategy with 100 iterations of the simulation 

and computed the average disutility over all iterations. I repeated this process for all 46 strategies 

and identified the strategy with the lowest average disutility. I continued this process for all 972 

problems. 

2.4  Results 

Table III shows the optimal trading algorithm by failure penalty, risk aversion, and 

performance metric. Panel A shows when the failure penalty is zero, which represents the most 

purely opportunistic fund manager. Strikingly, the optimal strategy in each case involves limit 

buys only – no market buys. If there is no penalty for failing to get the requested quantity, then 

the only trades that you want to do are those that incur a negative cost of trading, meaning a 

profit. In other words, you want every single trade to make a profit. 

Panels B and C show when the failure penalty is medium (0.50) and high (1.00), 

respectively. In every case, the optimal strategy involves market buys. One set of strategies 

mainly use limit buys, but are followed by market buys at the end. Another set of strategies uses 

market buys only. In either case, it is worth incurring the extra cost of trading due to market buys 

in order to avoid the failure penalty for a quantity shortfall. Given the other parameters 

(requested buy = 10% of daily volume, deadline = 20 periods, and fund manager’s information = 

0), the optimal strategy doesn’t vary very much by risk aversion and by performance metric. 

Table IV shows the optimal trading algorithm by fund manager’s information, deadline, 

and performance metric. Panel A shows when the fund manager’s information is zero. When the 

deadline is very short (2 periods), then the optimal trading algorithm is very aggressive with 

large market buys. When the deadline is medium or long (10 or 20 periods), then the optimal 
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trading algorithm is mainly limit buys, but with market buys at the end to get the requested 

amount. 

Panels B and C show when the fund manager’s information is medium (0.50) and high 

(1.00), respectively. As before when the deadline is very short, it is best to go with large market 

buys. However, when the deadline is medium or long and the performance metric is not effective 

spread, then it is also best to submit large market buys. The intuitive explanation for this has 

three steps: (1) the fund manager has a private signal of good news leading to a buy request, (2) 

statistically the fund manager is correct leading to a price increase over the trading day on 

average, and (3) anticipating this, it is best to purchase the security early in the day before the 

price has risen very much.  

An interesting exception to this logic occurs when the performance metric is effective 

spread. In this case, it is best to submit mainly limit buys, but with market buys. The benchmark 

under the effective spread metric is the contemporaneous midpoint. This has the unique property 

that the benchmark moves upward if trades are later in the day at higher prices. So under 

effective spread, there is no penalty for trading later in the day and it is best to spread out the 

trades over time. By contrast, the benchmark in the other three performance metrics (the request 

midpoint, the volume-weighted average price, and the closing price) are unaffected by the timing 

of trades. So under these three metrics, it is best to aggressively front-load the trading when you 

anticipate that the price rise on average. 

3.  Conclusion 

I determine the optimal trading strategy for an institutional trader who wants to purchase a large 

number of shares over a fixed time horizon. First, I consider the case when limit orders can be 

used as well as market orders. I develop a simple binomial model where limit orders either 
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execute or not. I find that the optimal sequence of limit orders involves small changes in price 

aggressiveness from node-to-node over a binomial tree. That is, if a given limit order executes 

(or not), then the next limit order optimally has a slightly less (more) aggressive price. I find that 

this trading strategy beats the benchmark trading strategy from the existing literature nearly all of 

the time and ties it in one special case. Second, I consider the case where trading algorithms can 

depend on a rich set of state variables. I develop a rich simulation model of trader who tries to 

satisfy the trading request of a fund manager. I model a pure limit order book exchange and 

allow the trader to select from a wide range of trading algorithms. I calibrate the simulation to 

real-world summary statistics based on order data. I find that if the fund manager is 

opportunistic, then the optimal algorithm involves only limit orders with low price 

aggressiveness. Conversely if the fund manager is committed, then limit orders should be 

followed by market orders at the end. I find that if the fund manager is informed and not using 

effective spread to measure the cost of trading, then market orders should be front-loaded in 

time. Conversely, if effective spread is used or if the fund manager is uninformed, then less 

aggressive orders should be spread evenly over time. 

 

Appendix 

Proof of Proposition 1. When 3k d , the optimal limit price aggressiveness is obtained by 

substituting (1) into (2) and taking the derivative with respect to b . The second order condition 

is positive and thus the objective function is minimized. The probability of execution is obtained 

by substituting (3) in place of b v  in (1). The expected disutility is obtained by substituting (3) 

and (4) into (2). When 3k d , substitute 3d  in place of k  in (3), (4), and (5) to obtain  ,a d  



 27

1,p   and   .E D d  By definition the price aggressiveness can’t go above d , so for any value 

of 3k d  the solution is constrained to the corner solution ,a d  1,p   and   .E D d  Q.E.D. 

Proof of Proposition 2. The optimal limit price aggressiveness is obtained by substituting (6), 

(10), and (11) into (9) and taking the derivative with respect to b . The second order condition is 

positive and thus the objective function is minimized. The probability of execution is obtained by 

substituting (12) in place of ,t n tb v
 
in (6). Equation (14) for the expected total cost of trading on 

future trades at the  ,t n  node is the probability weighted average of the expected total cost of 

trading on future trades at  1, 1t n   node and the  1,t n  node, where the incremental cost of 

trading ,t n tb v  is added when the current order executes. Equation (15) for the expected number 

of units to be purchased in future trades at the  ,t n  node is the probability weighted average of 

the expected number of units to be purchased in future trades at  1, 1t n   node and the 

 1,t n  node, where the number of units is incremented by one unit when the current order 

executes.  Q.E.D. 

Combined Proof of Propositions 3 and 4. The first step of the combined proof is to show that the 

probability of execution at any node where the trader is not done  n N  is a weighted average 

of the following two connected nodes. The proof is based on the connection between the f and h 

variables at a given node and the f and h variables at the following connected notes. Substituting 

(12) into (13) and then twice substituting (14) and (15) into the resulting equation yields  
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   
   

   
   

1, 1, 1 2, 1 1, 2,

, 1, 1 1, 1 1 2, 2 1, 1 2, 1

1, 1 2, 2 1, 1 2, 1

1, 2, 1 1, 2,

1

1
1

4
1 1 1

1 1

t n t n t t n t n t n

t n t n t n t t n t n t n

t n t n t n t n

t n t n t n t n

p b v f p f

p p b v f p f
d

p h p h
k

p h p h

      

          

       

    

     
            

      
       

.

d

 
 
 
 
 
 
 
    
 

                         (17) 

Rearranging (17) yields 

     

   
  

  

1, 1, 1 2, 2, 1 2, 1 2,

, 1, 1 1, 1 1 2, 1 2, 2 2, 2 2, 1

2, 2, 1 2, 1 2,

1

1
1 .

4

1

t n t n t t n t n t n t n

t n t n t n t t n t n t n t n

t n t n t n t n

p b v f f k h h

p p b v f f k h h
d

f f k h h d

        

            

     

         
                 

         

       (18) 

Substituting from (12) into (18) yields 

     

 
 

1, 1, 1,

, 1, 1 1, 1 1, 1

1,

2

1
2 .

4
2

t n t n t n

t n t n t n t n

t n

p a a d

p p a a d
d

a d d

  

     



     
           

       

                                             (19) 

Substituting from (13) into (19) yields 

     

    
    

 

1, 1, 1,

, 1, 1 1, 1 1, 1

1,

2 1 4 1

1
2 1 4 1 .

4
4 1

t n t n t n

t n t n t n t n

t n

p d p d p

p p d p d p
d

d p d

  

     



   
 

         
     

                                  (20) 

Rearranging (20) yields equation (16), in which the probability of execution at any node where 

the trader is not done  n N  is a weighted average of the following two connected nodes. 

Equation (16) will yield step-by-step aggressiveness in the Limit Order Zone once it is proven 

that up-nodes have higher probabilities and down-nodes have lower probabilities. 
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 The next step is to define the Market Order / Maximum Aggressiveness Zone for both the  

a and p binomial trees at the set of all nodes where there is non-positive slack time (i.e., the same 

or fewer time periods left than remaining units to be purchased 1T t N n    ). At all terminal 

nodes, there are no future trades, so 1, 1,0,  and 0.T n T nf h  
 
Substitute these equations into (12) 

for all of the nodes on the last trading date  t T  in the Market Order / Maximum 

Aggressiveness Zone to get 

 
,

1
when 3

2
          when 3

T n

k d k d
a

d k d

     
  

,                                        (21) 

and substitute this into (13) to get 

,

when 3
4

1       when 3
T n

k d
k d

p d
k d

    
  

.                                            (22) 

(21) and (22) are identical to the single-period solution. All of the nodes in this zone on earlier 

trading dates  t T  have two following connected nodes with a probability of execution given 

by (22). Since all nodes are a weighted average of the following two connected nodes by 

equation (16), their probability of execution must also be given by (22). Inverting (13) yields  

 , ,2 1t n t na d p  .                                                                   (23) 

Substituting (22) into (23) yields (21). 

 The next step is to define the Limit Order Zone for both the  a and p binomial trees at the 

set of all nodes where the trader is not done  n N  and there is positive slack time (i.e., more 

time periods left than remaining units to be purchased 1T t N n    ). Consider all of the 

nodes in the Limit Order Zone that border the Market Order / Maximum Aggressiveness Zone 

(i.e., have one following connection in the Market Order / Maximum Aggressiveness Zone and 
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one following connection not in the Market Order / Maximum Aggressiveness Zone). Since all 

nodes are a weighted average of the following two connected nodes by equation (16), these 

nodes must have a probability of execution that is strictly less than (22) and substituting into (23) 

yields an optimal limit order aggressiveness strictly less than (21). 

The next step is to define the Done Zone for both the  a and p binomial trees at the set of 

all nodes where the trader is done  .n N  For all of the nodes in the Done Zone, no more 

orders will be submitted and so the probability that an order will execute is zero , 0.t np   

Consider all of the nodes in the Limit Order Zone that border the Done Zone (i.e., have one 

following connection in the Done Zone and one following connection not in the Done Zone). 

Since all nodes are a weighted average of the following two connected nodes by equation (16), 

these nodes must have a probability of execution that is strictly greater than zero and substituting 

into (23) must have an optimal limit order aggressiveness strictly greater than .d  

The final step is to consider all nodes in the Limit Order Zone. Since all nodes are a 

weighted average of the following two connected nodes by equation (16), then one of the 

following connected nodes will have a higher probability of execution and the other will have a 

lower probability of execution. Since the nodes in the Limit Order Zone that border the Market 

Order / Maximum Aggressiveness Zone must connect to the higher probability of execution of 

the Market Order / Maximum Aggressiveness Zone and since the nodes in the Limit Order Zone 

that border the Done Zone must connect to the lower (zero) probability of execution of the Done 

Zone, then up-nodes must have a higher probability of execution and down-nodes must have a 

lower probability of execution. This proof that up-nodes have higher probabilities and down-

nodes have lower probabilities when combined with (16) yield that the probabilities exhibit step-

by-step aggressiveness in the Limit Order Zone, and by substituting into (23), their optimal limit 
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order aggressiveness must also exhibit step-by-step aggressiveness in the Limit Order Zone. 

Q.E.D. 
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Figure 1. Binomial Trees for a and p when the Failure Penalty is High. 

 

 



 36

 

Figure 2. Binomial Trees for a and p when the Failure Penalty is Low. 
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Figure 3. Binomial Trees for a and p when 1N   and the Failure Penalty is High. 
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Table I

Panel A:  Probability of order types
Order Type Probability
    Market buy 30.75%
    Market sell 30.75%
    Limit buy 19.25%
    Limit sell 19.25%
    No order 0.00%
Total 100.00%

Panel B:  Probability of Order Size by Order Type

Order Size
Probability of 
Market Order

Probability of 
Limit Order

     10 3.0% 0.5%
     20 3.0% 1.0%
     30 3.0% 1.0%
     40 4.0% 1.0%
     50 4.0% 1.5%
   100 19.0% 20.0%
   200 20.0% 20.0%
   300 20.0% 20.0%
   400 14.0% 20.0%
   500 10.0% 15.0%
Total 100.0% 100.0%
Average Size 230.4 276.7

Panel C:  Probability of Price Changes

Price Changes

Probability of 
Public Value 
Innovations

Probability of 
Limit Price 
Deviations

   -$0.05 13.0% 0.0%
   -$0.04 12.0% 0.0%
   -$0.03 10.0% 4.6%
   -$0.02 8.0% 8.0%
   -$0.01 6.0% 87.4%
    $0.00 2.0% 0.0%
    $0.01 6.0% 0.0%
    $0.02 8.0% 0.0%
    $0.03 10.0% 0.0%
    $0.04 12.0% 0.0%
    $0.05 13.0% 0.0%
Total 100.0% 100.0%
Mean Absolute 
Deviation 0.033

Calibration of Simulation Input Parameters

The simulation input parameters are calibrated to SEC Rule 605 
mandated disclosure of summary statistics by exchange by stock. 
Summary statistics for Dec 2011 are divided by 21 trading days and by 
20 intervals to scale to 20 minute intervals. NYSE TAQ data is sampled 
every 20 minutes to determine price volatility at 20 minute intervals.
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Table II
Trading Algorithms Tested
Algorithm Description
1.   LBs at bid -.01
2.   Strat 1, except LB price = bid
3.   Strat 1, except LB price = bid + .01
4.   Large MBs as needed
5.   Small MBs every other period
6.   Tiny MBs every period
7.   LBs with no cancel & resub
8.   Strat 7, except cancel & resub every 12 periods
9.   Strat 7, except cancel & resub every 4 periods
10. Medium MB when spread <.08; no condition when < 5 per
11. Medium MB when spread <.06; no condition when < 5 per
12. Medium MB when spread <.04; no condition when < 5 per
13. Medium LBs; More front-loaded; MB at end
14. Medium LBs; MB at end
15. Medium LBs; more agg prices below 6; MB at end
16. MB Ask Depth when spr <.08; no condition when < 5 per
17. MB Ask Depth when spr <.06; no condition when < 5 per
18. MB Ask Depth when spr <.04; no condition when < 5 per
19. 1/4 LBs; Step-by-step price agg; End MB
20. 1/4 LBs; Step-by-step price agg; End MB; Large At zone
21. 1/3 LBs; Step-by-step price agg; End MB
22. 1/3 LBs; Step-by-step price agg; End MB; Large At zone
23. 1/5 LBs; Step-by-step price agg; End MB
24. 1/5 LBs; Step-by-step price agg; End MB; Large At zone
25. 1/4 LBs; Step-by-step abs price agg (1,2,3); End MB
26. 1/4 LBs; Step-by-step abs price agg (2,3,4); End MB
27. 1/3 LBs; Step-by-step abs price agg (1,2,3); End MB
28. 1/3 LBs; Step-by-step abs price agg (2,3,4); End MB
29. 1/5 LBs; Step-by-step abs price agg (1,2,3); End MB
30. 1/5 LBs; Step-by-step abs price agg (2,3,4); End MB
31. Strat 7, except LB price = bid
32. Strat 8, except LB price = bid
33. Strat 9, except LB price = bid
34. Strat 13, except LB price = bid
35. Medium LBs; more abs agg prices (2,1) below 6; MB end
36. Medium LBs; more abs agg prices (3,2) below 6; MB end
37. Strat 7, except LB price = bid-.01
38. Strat 8, except LB price = bid-.01
39. Strat 9, except LB price = bid-.01
40. Strat 13, except LB price = bid-.01
41. Medium LBs; more agg prices below 8; MB at end
42. Medium LBs; more agg prices below 4; MB at end
43. Medium LBs; more abs agg prices (2,1) below 8; MB end
44. Medium LBs; more abs agg prices (2,1) below 4; MB end
45. Medium LBs; more abs agg prices (3,2) below 8; MB end
46. Medium LBs; more abs agg prices (3,2) below 4; MB end
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Table III

Risk 
Aversion Performance Metric Optimal Trader Strategy Description

Panel A  Failure Penalty is Zero

0 Effective Spread Limit Buys only, Bid - .01, no cancellation

0 Imple. Shortfall Limit Buys only, Bid - .01, no cancellation

0 VWAP Limit Buys only, Bid - .01, no cancellation

0 Closing Price Limit Buys; Midpoint-.02; in last 4 rounds Midpoint-.03; MB end

100 Effective Spread Limit Buys only, Bid - .01, no cancellation

100 Imple. Shortfall Limit Buys only, Bid - .01, no cancellation

100 VWAP Limit Buys only, Bid - .01, no cancellation

100 Closing Price Limit Buys; Midpoint-.01; in last 4 rounds Midpoint-.02; MB end

1000 Effective Spread Limit Buys only, Bid - .01, no cancellation

1000 Imple. Shortfall Limit Buys only, Bid - .01, no cancellation

1000 VWAP Limit Buys only, Bid - .01, no cancellation

1000 Closing Price Limit Buys only, Bid - .01, no cancellation

Panel B  Failure Penalty is Medium (0.50)

0 Effective Spread Limit Buys mainly; Market Buy at end

0 Imple. Shortfall Limit Buys mainly; Market Buy at end

0 VWAP Limit Buys mainly; Market Buy at end

0 Closing Price Limit Buys mainly; Market Buy at end

100 Effective Spread Limit Buys; Midpoint-.01; in last 4 rounds Midpoint-.02; MB end

100 Imple. Shortfall Limit Buys; Midpoint-.01; in last 4 rounds Midpoint-.02; MB end

100 VWAP Limit Buys; Midpoint-.01; in last 4 rounds Midpoint-.02; MB end

100 Closing Price Limit Buys; Midpoint-.01; in last 8 rounds Midpoint-.02; MB end

1000 Effective Spread Limit Buys; Midpoint-.01; in last 8 rounds Midpoint-.02; MB end

1000 Imple. Shortfall Limit Buys; Midpoint-.01; in last 4 rounds Midpoint-.02; MB end

1000 VWAP Limit Buys; Midpoint-.01; in last 4 rounds Midpoint-.02; MB end

1000 Closing Price Limit Buys; Midpoint-.01; in last 4 rounds Midpoint-.02; MB end

Panel C  Failure Penalty is High (1.00)

0 Effective Spread Limit Buys mainly; Market Buy at end

0 Imple. Shortfall Limit Buys mainly; Market Buy at end

0 VWAP Limit Buys mainly; Market Buy at end

0 Closing Price Limit Buys mainly; Market Buy at end

100 Effective Spread Limit Buys; Midpoint-.01; in last 4 rounds Midpoint-.02; MB end

100 Imple. Shortfall Large Market Buys

100 VWAP Large Market Buys

100 Closing Price Limit Buys; Midpoint-.01; in last 8 rounds Midpoint-.02; MB end

1000 Effective Spread Limit Buys; Midpoint-.01; in last 8 rounds Midpoint-.02; MB end

1000 Imple. Shortfall Limit Buys; Midpoint-.01; in last 8 rounds Midpoint-.02; MB end

1000 VWAP Limit Buys; Midpoint-.01; in last 8 rounds Midpoint-.02; MB end

1000 Closing Price Limit Buys; Midpoint-.01; in last 8 rounds Midpoint-.02; MB end

Optimal Trading Algorithm By Failure Penalty, Risk Aversion, and Performance Metric

The optimal trading algorithm is shown by failure penalty, risk aversion, and performance metric. In all 
cases below, the requested buy is 10% of daily volume, the deadline is 20, and the fund manager's 
information is zero.
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Table IV

Deadline Performance Metric Optimal Trader Strategy Description

Panel A  Fund Manager's Information is Zero

2 Effective Spread Large Market Buys

2 Imple. Shortfall Large Market Buys

2 VWAP Large Market Buys

2 Closing Price Large Market Buys

10 Effective Spread Limit Buys mainly; Market Buy at end

10 Imple. Shortfall Limit Buys mainly; Market Buy at end

10 VWAP Limit Buys mainly; Market Buy at end

10 Closing Price Limit Buys mainly; Market Buy at end

20 Effective Spread Limit Buys mainly; Market Buy at end

20 Imple. Shortfall Limit Buys mainly; Market Buy at end

20 VWAP Limit Buys mainly; Market Buy at end

20 Closing Price Limit Buys mainly; Market Buy at end

Panel B  Fund Manager's Information is Medium (0.50)

2 Effective Spread Large Market Buys

2 Imple. Shortfall Large Market Buys

2 VWAP Large Market Buys

2 Closing Price Large Market Buys

10 Effective Spread Limit Buys mainly; Market Buy at end

10 Imple. Shortfall Large Market Buys

10 VWAP Large Market Buys

10 Closing Price Large Market Buys

20 Effective Spread Limit Buys; Midpoint-.01; in last 6 rounds Midpoint-.02; MB end

20 Imple. Shortfall Large Market Buys

20 VWAP Large Market Buys

20 Closing Price Limit Buys mainly; Market Buy at end

Panel C  Fund Manager's Information is High (1.00)

2 Effective Spread Large Market Buys

2 Imple. Shortfall Large Market Buys

2 VWAP Large Market Buys

2 Closing Price Limit Buys Mainly; More front-loaded; MB at end

10 Effective Spread Limit Buys mainly; Market Buy at end

10 Imple. Shortfall Large Market Buys

10 VWAP Large Market Buys

10 Closing Price Large Market Buys

20 Effective Spread Limit Buys; Midpoint-.01; in last 8 rounds Midpoint-.02; Market Buy at end

20 Imple. Shortfall Large Market Buys

20 VWAP Large Market Buys

20 Closing Price Large Market Buys

Optimal Trading Algorithm By Fund Manager's Information, Deadline, and Performance Metric

The optimal trading algorithm is shown by fund manager's information, deadline, and performance metric. In 
all cases below, the requested buy is 10% of daily volume, the failure penalty is 0.50, and the fund manager's 
risk aversion is zero.


