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Abstract

Common wisdom is that competition between trading platforms in securities markets
benefit investors because it forces platforms to charge smaller fees. We challenge this view
by showing that a decrease in trading fee can impair investors’ expected welfare in limit
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limit orders with a smaller execution probability, in order to earn a greater surplus in case
of execution. Hence, a decrease in trading fee yields larger gains from trade when a trade
takes place but it can reduce the likelihood of a trade in the first place. The model has
testable implications for the effects of a change in trading fees and their breakdown between
investors submitting limit orders (makers) and market orders (takers) on limit order fill rates
and various measures of bid-ask spreads.
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1 Introduction

The industrial organization of securities markets is changing fast. In recent years, new trading

platforms (BATS, Chi-X, EdgeX, Turquoise etc...) have challenged incumbent stock exchanges

(e.g., NYSE-Euronext, the Nasdaq, the London Stock Exchange etc...). As a consequence, the

market shares of incumbent markets has been falling precipitously. For instance, in April 2009,

the market shares of Nasdaq and the NYSE were only 22.8% and 27% of the trading volume in

their listed stocks, respectively. A similar evolution is observed in Europe since 2007 (for instance,

the market share of the London Stock Exchange in the constituent stocks of the FTSE100 was

about 60% in 2009, down from 80% in 2007).1 As a result, trading is more fragmented across

markets.

Regulators and practitioners often argue that effi ciency gains in the pricing and quality of

trading services offset potential costs of market fragmentation (such as less effective price discov-

ery). For instance, in the introduction of the final release of RegNMS, the SEC claims that:

“Vigorous competition among markets promotes more effi cient and innovative trading

services, while integrated competition among orders promotes more effi cient pricing

of individual stocks for all types of orders, large and small. Together, they produce

markets that offer the greatest benefits for investors and listed companies.”(Regulation

NMS, page 12)

Certainly, competition among trading platforms has triggered a sharp decline in trading fees,

as illustrated by Figure 1 for major trading platforms in U.S. equities markets. What is less

obvious is whether this decline is necessarily good for investors. Clearly, when a trade takes

place, investors are better off if they pay a smaller fee. However, investors could be worse off

1The figures for U.S exchanges are from “NYSE, Nasdaq lose market share of U.S. equity trading in April.”
Bloomberg Business Week, May 03, 2010. The figures for European markets are based on authors’calculations
using data from Thomson-Reuters.
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on average if a smaller fee is associated with a smaller chance of consummating a trade. This

possibility must be considered when investors trade in limit order markets, as is often the case

in today’s markets. Indeed, liquidity provision in these markets rests on the submission of limit

orders by some investors. In submitting a limit order, an investor sets the price at which she

will trade but she takes the risk that no other investor will accept to trade at this price. Thus,

limit orders face a risk of non execution so that mutually profitable trades can be missed. The

associated welfare loss can be large, as shown empirically by Hollifield et al.(2006).

Insert Figure 1 about here

In sum, understanding the impact of trading fees on investors’welfare requires to analyze

how they affect execution probabilities for limit orders. This analysis does not exist in the

literature. Our goal in this paper is to fill this gap by modeling how trading fees affect limit

orders’execution probabilities and thereby investors’welfare in equilibrium. In reality, trading

platforms often charge different fees for investors hitting quotes (which they call “takers”) and

investors posting quotes (which they call “makers”). For instance, as of 2011, NYSEArca (a

trading platform owned by the NYSE) charges 30 cents (per round lot) to takers and rebates 23

cents (per round lot) to makers. The net revenue for NYSEArca is therefore 7 cents per round

lot traded. To account for this, in our model, we allow trading platforms to differentiate their

make and take fees and even to offer rebates.

Our model features the market for a security populated by buyers (investors with a high

private value for the security) and sellers (investors with a low private value).2 Buyers and sellers

arrive sequentially and have a deadline to carry out their trade. Upon arrival, an investor can

trade either in a limit order market or in a dealer market. In the limit order market, the investor

can choose to act as maker (post a limit order) or taker (hit posted quotes with a market order).

2This model builds upon Foucault (1999), who does not study how trading fees affect the make-take decision
for investors.
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Moreover, as explained previously, in case of execution, the total fee is split between makers and

takers. A maker obtains a better execution price but he runs the risk that his order will remain

unfilled by the time his deadline is reached. In the dealer market, investors cannot place limit

orders but they can trade immediately at dealers’quotes and do not pay a trading fee. In this

way, we account for the fact that limit order markets often face competition from informal (OTC)

dealer markets.3

The model has several implications for securities markets design. First, there exists a range

of parameter values for which unbridled competition between limit order markets is harmful for

investors’welfare. In line with common wisdom and Figure 1, this competition drives the total

trading fee charged by trading platforms to zero. However, it can also induce makers to post

quotes with a smaller execution probability, in an attempt to extract more surplus from takers

in case of execution. When this happens, we show that investors’welfare can be increased by

setting a floor on the trading fee charged by competing trading platforms.

Second, we show that the breakdown of trading platforms’total trading fee between makers

and takers is irrelevant: it does not affect investors’ex-ante welfare. The reason is simple: holding

the total fee constant, any change in the make/take fee breakdown is neutralized by changes in

bid and ask quotes set by makers. For instance, suppose that the make/take fees are equally split

between makers and takers (a 50/50 make/take fee breakdown) and consider a decline in the

make fee, holding the total fee constant. Makers react by posting more aggressive ask and bid

prices (they pass through part of their savings in fees to the takers). However, after accounting

for the take fee, the prices paid or received by takers are identical to those obtained with a 50/50

make/take fee breakdown in equilibrium. Hence, the dynamics of trades and investors’ gains

from trade are not determined by the make/take fee breakdown.

3For instance, in European and U.S. equities markets, brokerage firms can “internalize” the execution of an
order by passing it to their market-making branch.
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Third, we study whether investors benefit from the coexistence of a limit order and an dealer

market. This question is important since regulators and practioners are debating whether or

not trading should be centralized in computerized limit order markets. In our model, the dealer

market is used by impatient investors (investors with high waiting costs) when the limit order

market lacks liquidity (rather than submit a limit order and wait for execution). It also used

by investors who submit limit orders that do not execute. For these reasons, the coexistence

of a limit order market with a dealer market can enhance traders’welfare. However, the dealer

market may induce makers to post limit orders with a lower execution probability because it acts

as “a safety net” in case on non-execution. This last effect is detrimental to investors’welfare

and, accordingly, there exist parameter values where investors’welfare is higher when the dealer

market is shut down.

Our theory has several empirical implications. A basic prediction, that underlies many of our

policy implications, is that a change in the total trading fee should affect the execution probability

for limit orders, positively or negatively depending on parameter values. Interestingly, Malinova

and Park (2011) find evidence in line with this prediction of our model. Our model also provides

an explanation for the increase in OTC trading in European and U.S. equities markets. At

first glance, this evolution is puzzling since trading fees have declined in electronic limit order

markets. Hence, one would expect the market share of the OTC market to decline, not to increase.

However, our model implies that a decrease in trading fees may induce investors to post limit

orders with a lower execution probability. As a result, investors may, counter-intuitively, end up

trading more frequently with dealers than when fees were higher. One way to check whether our

explanation is valid is to study the evolution of limit order fill rates in the recent years.

Last, regulatory debates on make/take fees often center on their effects on bid-ask spreads.

Evidence on these effects are still scarce however and our model yields several testable hypotheses
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on this point. In equilibrium, the “raw”traded bid-ask spread (i.e., the difference between ask

and bid prices at which trades take place) decreases in the take fee and increases in the make fee.

Thus, an increase in the total fee can lead to a wider or a tighter raw bid-ask spread depending

on whether the take or the make fee increases. In contrast, the cum fee bid-ask spread (i.e., the

difference between the ask price plus the take fee and the bid price minus the take fee) always

increases in the total fee and is independent of the make/take fee breakdown.

Our analysis is related to theories of “competition for order flow”in securities markets (e.g.,

Pagano (1989), Glosten (1994), Hendershott and Mendelson (2000), Parlour and Seppi (2003),

Foucault and Menkveld (2008), or Degryse et al. (2009)).4 These theories usually do not consider

the possibility for investors to act as a maker or a taker and the effects of trading fees on this

choice, as we do here.5 Instead, the literature has focused on liquidity externalities and network

effects (e.g., Pagano (1989) or Hendershott and Mendelson (2000)), which are absent from our

analysis.6

More generally, our paper contributes to the theoretical literature on competition between

markets for real or financial assets (e.g., Yavas (1992), Gehrig (1993), Spulber (1996) or Rust

and Hall (2006); see Cantillon and Yin (2010b) for a review of the issues specific to this type of

competition). This literature also takes trading fees as given (or ignores these fees). Hence it

focuses on the demand for trading services taking the supply side as given. In contrast we model

both the demand and the supply side by explicitly modelling the choice of their fees by trading

platforms. This approach is important to analyze the effi ciency of various trading arrangements

4There is also a rich empirical literature on this topic (e.g., Barclay et al. (2003), Biais et al. (2004), Boehmer
and Boehmer (2004), Defontnouvelle et al. (2003), Foucault and Menkveld (2008), O’Hara and Ye (2009), or
Cantillon and Yin (2010a)).

5Foucault, Kadan and Kandel (2010) study the role of make and take fees but they do not allow investors to
choose between limit and market orders as we do here. They emphasize the importance of the minimum price
variation (“the tick size”) for the determination of the optimal make and take fees breakdown. In contrast, the
tick size is set to zero in our analysis, which explains why we find that the make/take fee breakdown is neutral
(e.g., it does not affect the trading rate and investors’welfare) in contrast to Foucault, Kadan, and Kandel (2010).

6As pointed out by O’Hara and Ye (2011), the development of smart routing technologies have resulted in “a
single virtual market with many points of entry,”(page 14), considerably lessening the role of liquidity externalities.
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in securities markets. Last our paper is also related to Degryse et al. (2010) who study the

effect of clearing and settlement fees on investors’order placement strategies. Their approach

is complementary since clearing and settlement fees add to the trading fee paid by investors to

trading platforms.

The paper is organized as follows. Section 2 describes the model. Section 3 derives the

equilibrium of the model for fixed fees while Section ?? endogenizes the fees in various market

structures. In Section ??, we derive some policy and empirical implications of the model. Section

6 concludes. An appendix provides the proofs of the claims in the paper (those that do not

appear in the paper for brevity are available on a companion Internet Appendix).

2 Model

2.1 Market participants

Buyers and Sellers. We consider the market for a riskless security that pays a single cash flow,

v0, at a random date T̃ . Specifically, at each date τ = 0, 1, 2,...., there is a probability (1 − ρ)

that the asset pays its cash-flow. If date τ is not the terminal date, then a new investor arrives in

the market to buy or to sell one share of the security. The investor has a deadline of one period

to carry out his transaction, after which he leaves the market forever. An investor’s valuation for

the security is either high, vH = v0 + L or low, vL = v0 − L with equal probabilities.7 Investors

with a high valuation want to buy the security whereas investors with a low valuation want to

sell it. Hence, the size of the gains from trade between buyers and sellers is equal to 2L.

Investors also differ in terms of impatience: patient investors’discount factor is δ̂H whereas

impatient investors’discount factor is δ̂L < δ̂H with δ̂L > 0. The fraction of patient investors

is denoted by π. In practice, investors’preference for quick execution arises from the need to

7Heterogeneity in investors’private value generates gains from trade as in many other models of limit order
trading (e.g., Goettler et al. (2009) or Hollifield et al. (2004)). See Duffi e et al. (2005) for economic interpretations.
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synchronize trades across different securities (e.g., for arbitrageurs) or replicate a security (e.g.,

for index fund managers). The discount factor captures this preference for quick execution (as,

for instance, in Goettler et al. (2009)). Each investor can trade either in a dealer market or in a

limit order market, as shown on Figure 2.

Insert Figure 2 here

The Dealer Market (DM). In this market, dealers continuously post ask and bid prices

denoted Ad and Bd at which they stand ready to buy or sell one share of the security. They value

the security at v0 and to process an order, they bear a cost λ. Price competition among dealers

drives their expected profit to zero, so that their quotes are:

Ad = v0 + λ,

Bd = v0 − λ.

When he contacts a dealer, an investor buys or sells the security at the dealer’s quotes and exits

the market forever. 8Thus, when a trade takes place on the dealer market, the surplus accruing

to the investor is Gd ≡ L − λ. If λ ≥ L, investors cannot trade at a profit with dealers and the

dealer market is inactive.

The Limit Order Market (LOM). Alternatively, the investor can choose to trade in the

limit order market. He must then choose to submit either a limit order or a market order. If an

investor submits a buy (resp. sell) market order then the investor immediately trades at the best

available ask (resp. bid) price and exits the market. If instead the investor submits a limit order,

he posts a bid or an ask price at which he is willing to trade. This offer is stored in the limit order

book, waiting for future execution. Limit orders are valid for one period since this is the deadline
8 In dealer markets, commissions are in general factored into quotes. Thus, investors do not pay a fee to trade

in the dealer market.
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of all investors. Thus, either a limit order is filled after one period or it is cancelled. If the

limit order is cancelled, then the investor can trade with a dealer and exits.9 That is, investors

with unfilled limit orders use the dealer market in last resort. Following the terminology used

by trading platforms, we call "makers" the investors posting quotes and “takers”the investors

hitting quotes.

The limit order book is the set of offers posted in the limit order market at any point in time.

As limit orders are valid for only one period, at each date τ , the limit order book has three

possible states: (i) it contains a sell limit order, (ii) it contains a buy limit order, or (iii) it is

empty. Let Aτ and Bτ be the ask and bid prices posted in the limit order market at the beginning

of period τ . If there is no sell (buy) limit order in the book, we set Aτ = +∞ (Bτ = −∞).

The owner of the limit order market (the "matchmaker") collects a fee, f , each time a trans-

action occurs. For simplicity, we set the cost of processing trades for the matchmaker to zero.

Thus,the exchange fee, f , is the profit earned per trade by the matchmaker. This exchange fee is

split between the two sides (maker/taker) in the transaction as follows: the taker pays a fraction

θ of the exchange fee and the maker pays a fraction (1 − θ) of the fee. Following practice, we

refer to fma ≡ (1− θ) · f as the "make fee" and to fta ≡ θ as the "take fee". The make/take fee

breakdown, θ, can take any value (positive or negative) so that the make fee or the take fee can

be negative. The total fee however is positive (f ≥ 0) as otherwise the matchmaker would lose

money on each trade. Thus, if the make fee is negative (θ > 1), the take fee is positive and vice

versa.

We denote by

Gl
def
= 2L− f ,

9 If a limit order is unfilled at, say, date τ , there is a small delay (less than one period) between the moment
at which the investor with the unfilled limit order exits the market (after trading in the dealer market) and the
moment at which a new investor arrives. Hence, the only exit option for the first investor is to trade with a dealer.
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the size of the gains from trade net of the fees charged by the matchmaker. When a trade takes

place on the limit order market, the total surplus is Gl + f > Gd, i.e., conditional on a trade, the

limit order market is a more effi cient technology to match buy and sell orders.10

2.2 Equilibrium Types

Upon arriving, an investor can submit a market order, a limit order, or trade in the dealer

market. In making his choice, the investor faces a trade-off between taking the price posted by

other traders (dealers or limit order traders) or posting a price but bearing a waiting cost and a

risk of non execution. We now analyze the solution to this trade-off. To this end, let δi ≡ ρ · δ̂i

for i ∈ {H,L}. For brevity, we refer to δi as investor i’s discount factor.

Consider a trader with a discount factor δi who arrives at date τ and let Vτ (δi) be the highest

expected payoff that the trader can obtain if he submits a limit order. Intuitively, this payoff is

the same for a buyer or a seller because the two sides of the market are symmetric. Moreover,

Vτ (δH) > Vτ (δL) since a patient investor can always submit the same limit order as an impatient

investor and obtain a strictly larger expected payoff (since her discount factor is higher).

The trader submits a market order if the payoff of this order is greater than the maximum

payoff with the other choices: a limit order or a trade in the dealer market. For instance, a seller

arriving at date τ submits a market order iff

Bτ − fta − vL ≥Max{Vτ (δi), G
d},

10Studies of bid-ask spreads on Nasdaq and the NYSE when these markets were, respectively, similar to a dealer
market and a limit order market have shown that the average bid-ask spread on Nasdaq was higher than on the
NYSE, in part because real costs of intermediation were higher on Nasdaq (see Stoll (2000)). The real cost of
intermediation in a dealer market includes labor costs but also the cost of capital associated with inventory risk.
This cost is absent from our model but will add up to the cost of intermediation in the dealer market. Fink et al.
(2006) also provides evidence consistent with the view that limit order markets are less costly trading technologies.
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that is:

Bτ ≥ B̂τ (δi),

where

B̂τ (δi) = vL + fta +Max{Vτ (δi), G
d}. (1)

This cut-off price is the smallest bid price at which a seller arriving at date τ is willing to submit

a sell market order. Using the same reasoning, the highest ask price at which a buyer arriving at

date τ is willing to submit a buy market order is

Âτ (δi) = vH − fta −Max{Vτ (δi), G
d}. (2)

As Vτ (δH) ≥ Vτ (δL), we have B̂τ (δH) ≥ B̂τ (δL) and Âτ (δH) ≤ Âτ (δL). That is, offers in the

limit order book must be more aggressive to attract market orders from patient investors. This

implies that more aggressively priced limit orders have a higher execution probability.

To see this, suppose that the seller arriving at date τ submits a limit order. Let A be the

price of this order and φ(A) be its execution probability (or “fill rate”). If the next trader is a

seller, the limit order does not execute. If the next trader is a buyer, the limit order executes

with certainty if A ≤ Âτ+1(δH), does not execute if A > Âτ+1(δL), and executes only if the buyer

is impatient otherwise. Hence, conditional on continuation of the trading game at date τ + 1, we

have

φ(A) =



φH if A ≤ Âτ+1(δH),

φL if Âτ+1(δH) < A ≤ Âτ+1(δL),

0 if A > Âτ+1(δL),

(3)

with φH = 1
2 and φL = (1−π)

2 . As φ(A) is a decreasing step function, there is a continuum of offers

with the same execution probability. Obviously, for a given execution probability, it is optimal
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for the seller to make the highest possible offer. Thus, the seller faces a trade-off between two

offers: an aggressive offer at Âτ+1(δH) and a less aggressive offer at Âτ+1(δL). The first offer has

a higher execution probability (φH > φL) but it yields a smaller surplus in case of execution. As

the seller chooses the offer which yields the highest expected payoff, we deduce that

Vτ (δi) = Maxk∈{H,L} δi ·
(
φk(Âτ+1(δk)− fma − vL) + (1− φk)Gd

)
.

Substituting Âτ+1(δk) by its expression in equation (2), we obtain

Vτ (δi) = δi

(
Maxk∈{H,L} φk(G

l −Max{Vτ+1(δk), G
d}) + (1− φk)Gd

)
. (4)

Similarly, a buyer submitting a limit order must optimally choose either an aggressive bid

equal to B̂τ+1(δH) with a high fill rate (φH) or a less aggressive bid equal to B̂τ+1(δH) with a low

fill rate (φL). By symmetry, the highest expected payoff of the buyer is also given by equation

(4).

We shall focus on stationary equilibria, i.e., equilibria in which traders’strategies and therefore

their payoffs do not depend on time. Let V ∗(δi) be a trader’s maximal expected payoff with a

limit order in a stationary equilibrium. Equation (4) implies that

V ∗(δi) = δi

(
Maxk∈{H,L} φk(G

l −Max{V ∗(δk), Gd}) + (1− φk)Gd
)
, for i ∈ {H,L}. (5)

For each value of the parameters, we can then solve for traders’order placement strategies by

first solving equation (5) for V ∗(·). We then deduce traders’cut-off prices using equations (1)

and (2) and whether traders choose a limit order with a high or a low execution probabilities

when they submit a limit order.

The equilibrium can have one of five possible types, as shown in Table 1. First, if V ∗(δH) < Gd,
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the dealer market “crowds out”the limit order market: investors never submit a limit order since

their expected payoff is too small relative to what they can obtain by trading upon arrival on the

dealer market. As a result no trade happens on the limit order market.

When V ∗(δH) ≥ Gd, patient traders prefer to submit a limit order rather than trading in

the dealer market immediately upon arrival.11 Hence, at least when the limit order book lacks

liquidity on their side, patient traders use limit orders in equilibrium. We say that patient

investors are specialized if they only use limit orders. This happens when limit orders are not

aggressively priced so that they attract only impatient investors and have therefore a low fill

rate. Otherwise patient investors are unspecialized : they use both market and limit orders in

equilibrium.

In a symmetric way, we say that impatient investors are specialized if they only use market

orders. This happens when V ∗(δL) < Gd < V ∗(δH). In this case, they hit limit orders placed by

patient investors or, if the limit order book is empty on their side, they trade upon arrival in the

dealer market. If instead, V ∗(δL) > Gd, impatient investors are unspecialized: they submit limit

orders when the limit order book lacks liquidity on their side and they submit market orders

otherwise.

Gd < V ∗(δL). V ∗(δL) < Gd ≤ V ∗(δH) V ∗(δH) < Gd

Fill Rate for Limit Orders High (φH) Low (φL) Low (φL) High (φH) n.a

Patient Investors Unspecialized Specialized Specialized Upecialized n.a

Impatient Investors Unspecialized Unpecialized Specialized Specialized n.a

Equilibrium Type UPUI (#1) SPUI (#2) SP SI (#3) UP SI (#4) Crowding out (#5)

11When an investor is indifferent between the two trading venues, we assume that he trades on the limit order
market.
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Table 1

Henceforth, we focus on the case in which parameter values satisfy the following condition:

C.1:
2π

1− π (1− δL) < δH − δL <
2π

1− π . (6)

Note that this condition requires π ≤ 1
3 since δj ∈ (0, 1]. Under Condition C.1, each type of

equilibrium can occur (see next section). In this way, our analysis covers all possible cases that

can emerge in equilibrium. In contrast, for other parameter values, some equilibria do not exist.

The results however still hold when Condition C.1 is not satisfied. Sometimes, for brevity, we shall

refer to an equilibrium by its shorthand, e.g., "#1" for the unspecialized patient/unspecialized

impatient investors equilibrium.

3 Equilibrium for fixed fees

We first describe the conditions under which a given type of equilibrium obtains, holding fixed the

exchange fee and its breakdown between makers and takers. These are endogenized in subsequent

sections. To describe the equilibria, let us define κ0 = 0, κ1 = 2π−(1−π)(δH−δL)
2π+δH(1+π)−δL(1−π) , κ2 = δL(1−π)

2(1−δLπ) ,

κ3 = δH(1−π)−2π
2(1−2π−δHπ) , and κ4 = δH

2 . Under Condition C.1, κ0 < κ1 ≤ κ2 ≤ κ3 ≤ κ4. Moreover, let

us define

λk ≡ L(1− 2κk), (7)

and

fk(λ) = Max

{
0,
λ− λk
κk

}
, for k ∈ {1, 2, 3, 4}, (8)

with f0(λ) = 0. Observe that fk(λ) increases in κk so that f0(λ) ≤ f1(λ) ≤ f2(λ) ≤ f3(λ) ≤

f4(λ).
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Proposition 1 The values of the parameters being fixed, there is a unique stationary equilibrium.

This equilibrium is of type k ∈ {1, 2, 3, 4} if and only if fk−1(λ) ≤ f < fk(λ). Otherwise, if

f > f4(λ), the dealer market crowds out the limit order market.

Using Proposition 1, Figure 3 gives the type of equilibrium obtained for each value of the

matchmaker’s trading fee (f) and the order processing cost in the dealer market (λ). It also

shows the fill rate for limit orders in each case and, using Corollary 3 below, the trading rate on

the limit order market in each type of equilibrium. As shown on Figure 3, when the matchmaker’s

trading fee is zero (f = 0), an equilibrium of type k is obtained iff λk < λ ≤ λk−1 since fk(λ)

increases with λ and is zero for λ = λk.

[Insert Fig.3 here]

Recall that in equilibrium patient and impatient sellers submitting limit orders post the same

ask price while patient and impatient buyers post the same bid price. We denote the equilibrium

ask price by A∗ and the equilibrium bid price by B∗. Due to the model’s symmetry, these quotes

are centered around v0. That is, A∗ = v0 + S∗/2 and B∗ = v0 − S∗/2, where S∗ = A∗ − B∗.

This spread is the difference between the execution price for buy market orders and the execution

price for sell market orders in equilibrium. Thus, following Stoll (2000), we refer to S∗ = A∗−B∗

as the traded bid-ask spread on the limit order market.

Lemma 1 In equilibrium, the traded spread in the limit order market is:

S∗(f, λ, θ) =



2
(
L− θf − δH

2+δH
(3L− f − λ)

)
if 0 ≤ f < f1(λ)

2
(
L− θf − δL

2+δL(1−π)

(
(1− π)(2L− f) + (1 + π)(L− λ

))
if f1(λ) ≤ f < f2(λ)

2
(
λ− θf

)
if f2(λ) ≤ f < f3(λ)

2
(
L− θf − δH

2+δH
(3L− f − λ)

)
if f3(λ) ≤ f < f4(λ)
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The traded bid-ask spread does not fully determine the division of gains from trade between

makers and takers because it does not account for take fees. Hence, we also define the cum fee

bid-ask spread, Sc(f, λ, θ), which is the difference between the price cum fee and the bid price

net of fee, that is: Sc(f, λ, θ)
def
= S∗ + 2fta = S∗ + 2θf . When a trade occurs, the surplus earned

by takers is

vH − (A∗ + fta) = (B∗ − fta)− vL = L− Sc(f, λ, θ)/2 (9)

while makers earn

A∗ − fma − vL = vH − fma −B∗ = L− f + Sc(f, λ, θ)/2 (10)

Thus, a greater cum fee bid-ask spread means that takers capture a smaller share of the gains

from trade available to makers and takers (2L − f). When the limit order market is active, the

cum fee bid-ask spread is always lower than the bid-ask spread on the dealer market (the two

spreads are just equal when f2(λ) ≤ f < f3(λ)).12 Otherwise, it would never be optimal to

submit a market order. Moreover the cum fee bid-ask spread is always positive. In contrast, the

total fee being fixed, when the maker fee, fma, is negative and suffi ciently large in absolute value,

the traded bid-ask spread can be negative. Yet, buying the security at the ask price and reselling

it at the bid price would not be profitable because, cum fee, the bid-ask spread is positive.

Corollary 1 1. The traded bid-ask spread depends on the make/take fee breakdown: it de-

creases when takers pay a higher fraction of the total trading fee (∂S
∗

∂θ < 0). In contrast,

the cum fee bid-ask spread does not depend on the make/take fee breakdown, θ (∂S
c

∂θ = 0).

2. The cum fee bid-ask spread increases in the exchange fee, f .

12The traded spread is S∗ = Sc − 2fta. Thus, it is also smaller than the bid-ask spread in the dealer market
when fta > 0. In contrast, when fta < 0, the traded bid-ask spread can exceed the bid-ask spread in the dealer
market.
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If the platform allocates a higher fraction of the exchange fee to takers then, other things

equal, it becomes more costly to place a market order and more attractive to place a limit order.

Hence, buyers’cut-off prices decrease whereas sellers’cut-off prices increase (see equations (1)

and (2)). As a consequence, traders submitting limit orders must post more attractive quotes

and the traded bid-ask spread drops. In equilibrium, this drop is just equal to the increase in

the take fee so that the cum fee bid-ask spread is eventually unchanged (first part of Corollary

1). The reasoning is symmetric for an increase in the fraction of the exchange fee allocated to

makers.

Hence if the platform changes its make/take fee breakdown, this change is fully neutralized

by the adjustment in equilibrium quotes. Thus, the make/take fee breakdown is neutral: it does

not affect limit order fill rates, the trading rate, and for this reason traders’ex-ante expected

welfare (see Section 5.1). This result has several empirical implications that we discuss in Section

5.4.

In contrast, an increase in the exchange fee is not neutral. Obviously, it reduces the net gains

from trade for makers and takers when a trade takes place. Less obviously, as shown in our two

next results, it also affects the likelihood of execution for limit orders and the trading rate.

Corollary 2 In equilibrium, the fill rate for limit orders is:

FR∗(f, λ) =



φH if 0 ≤ f < f1(λ)

φL if f1(λ) ≤ f < f3(λ)

φH if f3(λ) ≤ f < f4(λ)

0 if f > f4(λ)

Thus, the fill rate for limit orders is a non monotonic function of the exchange fee: it decreases

(from φH to φL) when the trading fee increases from f < f1(λ) to f ∈ [f2(λ), f3(λ)) but it
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increases again when the trading further increases from f ∈ [f2(λ), f3(λ)) to f ∈ [f3(λ), f4(λ)].

Thus, the matchmaker’s total fee is one determinant of limit orders’fill rate. The reason

is that the trading fee affects the relative payoffs of limit orders with high and low execution

probabilities. To see why, let ∆(f) be the difference between the expected payoff of a limit order

with a high fill rate and the limit order with a low fill rate, before discounting, i.e.,

∆(f) = φH(Gl − V ∗(δH))− φL(Gl − V ∗(δL))− (φH − φL)Gd. (11)

Now suppose that f2(λ) ≤ f < f3(λ). In this case, impatient traders are specialized, so that

V ∗(δL) = Gd and patient investors submit limit orders with a low execution probability, which

means that ∆(f) < 0. Moreover

∂∆

∂f
= −(φH − φL)− φH

∂V ∗(δH)

∂f
= −π

2
− 1

2

∂V ∗(δH)

∂f
. (12)

The sign of this derivative is ambiguous because ∂V ∗(δH)

∂f
< 0, i.e., an increase in trading fee

reduces the total expected payoffwith a limit order in equilibrium. Calculation yields: ∂V
∗(δH)

∂f
=

δH(1−π)
2 when f2(λ) ≤ f < f3(λ) so that ∂∆

∂f
> 0 because δH > 2π

(1−π) (Condition C.1). Thus,

for f2(λ) ≤ f < f3(λ), submitting a limit order with a low execution probability is optimal but

the difference between the payoff of this order and the payoff of an order with a high execution

probability shrinks as the trading fee increases. For f = f3(λ), this difference is just equal to

zero and becomes negative for f > f3(λ). Thus, when the trading fee increases from the range

f2(λ) ≤ f < f3(λ) to the range f3(λ) ≤ f < f4(λ), makers switch from using limit orders with

a low execution probability to limit orders with a high execution probability.

When the limit order market is active, the investor who arrives at a given date can be: (1) a

patient investor who submits a limit order; (2) a patient investor who submits a market order; (3)
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an impatient investor who submits a limit order; (4) an impatient investor who submits a market

order; (5) an impatient investor who trades upon arrival in the dealer market. Let ϕ
j
(λ, f) be

the stationary probability of the jth event at date τ in equilibrium conditional on the asset being

still traded at date τ . Hence, the likelihood of a trade on the limit order market in a given period

is

TR(λ, f) = ϕ2(λ, f) + ϕ4(λ, f). (13)

This probability also measures the average number of trades per period on the limit order market

since it gives the fraction of periods in which a trade takes place on the limit order market. Thus,

it measures the trading rate on the limit order market.

Corollary 3 In equilibrium, the trading rate in the limit order market is:

TR∗(f, λ) =



1
3 if 0 ≤ f < f1(λ)

1−π
3−π if f1(λ) ≤ f < f2(λ)

π(1−π)
2 if f2(λ) ≤ f < f3(λ)

π
2+π if f3(λ) ≤ f ≤ f4(λ)

0 if f > f4(λ)

As π ≤ 1
3 (Condition C.1), we have

π
2+π >

π(1−π)
2 . Thus, the trading rate increases when the

trading fee switches from the range [f2(λ), f3(λ)) to the range [f3(λ), f4(λ)]. Indeed, this switch

results in a greater fill rate for limit orders (Corollary 2) and as explained previously, the increase

in the trading fee incentivizes makers to post more aggressive offers. Thus, the model implies

that the trading rate can increase in the exchange fee, for some parameter values.

19



4 Inter-market competition and Fees

4.1 Competition between a matchmaker and a dealer market does not drive

the matchmaker’s fee to zero

The per period expected profit of the matchmaker is equal to the trading rate on the limit order

market times the exchange fee per trade on this market. As the trading rate does not depend on

the breakdown of the exchange fee, the matchmaker’s problem is

Max
f

Π(f, λ) ≡ TR(f, λ)× f .

Remember that the trading rate is a step function of the matchmaker’s total fee (see Corollary

3). Thus, there is a continuum of values for f that result in the same trading rate. In this set, the

platform optimally chooses the highest fee. Hence, ultimately, the matchmaker chooses one among

four fees: f1(λ), f2(λ), f3(λ), or f4(λ), ranked in increasing order (a fee strictly higher than f4(λ)

results in no trading on the limit order market). Corollary 3 implies that the trading rate on the

limit order market is higher when the matchmaker’s fee is f4(λ) than when it is f3(λ). Hence, the

fee f3(λ) cannot be optimal for the matchmaker since it generates fewer trades and a lower revenue

per trade. In making its choice among the remaining fees, the platform faces the traditional

price-quantity trade-off for a monopolist: the larger the fee charged by the matchmaker, the

smaller the trading rate on the limit order market. The solution to this trade-off ultimately

depends on the order processing cost in the dealer market, as shown in the next proposition.

For this proposition, we use the following notations: λ
′
1 ≡

(
(3−π)κ−11 −3(1−π)κ−12 −4π

(3−π)κ−11 −3(1−π)κ−12

)
L, λ

′
2 ≡(

(2+π)κ−11 −3πκ−14 −4(1−π)

(2+π)κ−11 −3πκ−14

)
L, λ

′
3 ≡

(
(1−π)(2+π)κ−12 −π(3−π)κ−14 −4(1−2π)

(1−π)(2+π)κ−12 −π(3−π)κ−14

)
L. Under C.1, we have either

λ
′
1 > λ

′
2 > λ

′
3 > λ4 or λ

′
3 > λ

′
2 > λ

′
1 > λ4.

Proposition 2 1. If λ < λ4, the limit order market is inactive (there is no positive fee for

20



which the matchmaker can attract limit orders).

2. If λ ≥ λ4, the matchmaker’s optimal fee is

f
∗
(λ) =



f1(λ) if max(λ
′
1, λ

′
2) ≤ λ ≤ L,

f2(λ) if λ
′
3 ≤ λ < λ′1,

f4(λ) if λ4 ≤ λ < min(λ
′
2, λ

′
3).

Thus, for all values of λ > λ4, the matchmaker’s optimal fee is non competitive (f
∗
(λ) > 0

for λ > λ4).

Figure 3 shows the optimal fee for the matchmaker as a function of order processing cost in

the dealer market, λ when λ
′
1 > λ

′
2 > λ

′
3 > λ

′
4. The situation in which λ = L is akin to the case in

which the dealer market does not exist and the matchmaker has therefore full monopoly power.

In this case, the matchmaker leaves no surplus to investors by charging the largest possible fee:

f
∗
(L) = 2L. When λ < L, the matchmaker must leave a surplus at least equal to Gd > 0 to

investors as otherwise they would trade on the dealer market. For this reason, the matchmaker’s

optimal fee tends to decrease when the order processing cost in the dealer market declines. Yet,

as long as λ is greater than λ4, the fee charged by the matchmaker is strictly positive. That

is, competition from the dealer market is not suffi cient to drive the matchmaker’s profit to zero,

unless dealers’order processing cost is low enough.

The reason is as follows. Liquidity provision is costly both in the dealer market and in the

limit order market. In the dealer market, dealers bear an order processing cost, which is passed

through to investors. In the limit order market there is no order processing cost but makers

bear a waiting cost, which is inversely related to their discount factor. Intuitively trading in

the limit order market is more effi cient (i.e., generate higher overall gains from trade) as long

as this waiting cost is not too large compared to the order processing cost, in particular λ >
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λ4 = L(1 − δH). The matchmaker can capture part of this effi ciency gain when it is unique in

providing the trading technology (a limit order market) enabling traders to realize this effi ciency

gain, as assumed so far. Intuitively, the matchmaker’s rent should vanish if a second matchmaker

offers the same trading technology. We now show that this is the case in the next section.

4.2 Competition among matchmakers drives the trading fee to zero

We now consider the case in which investors can choose to trade on two matchmakers, denoted

1 and 2, rather than just one. The fees and quotes on the platform ran by matchmaker j are

indexed by j ∈ {1, 2}. For instance, f j is the total fee on platform j, θj is the fraction of this

fee paid by takers, and A∗j is the ask price posted by sellers on this platform in equilibrium.

Upon arrival, an investor observes the limit order books of each market and decides whether to

submit a market order, a limit order or to trade on the dealer market. Moreover, if the investor

chooses a market order or a limit order, the investor also decides whether the order gets routed

to matchmaker 1 or to matchmaker 2. When indifferent, we assume that the investor chooses

either market with equal probabilities. The formal definition of the equilibrium in this case and

the proofs of the results in this section are given in the Internet Appendix, for brevity.

Proposition 3 • If the matchmakers charge different total fees (f1 6= f2), the limit order

market with the highest total fee is inactive and the equilibrium is as described in Section 3

with a single limit order market charging f = Min{f1, f2}.

• If the matchmakers charge the same total fees (f1 = f2), the equilibrium on each platform is

as described in Section 3 but each platform only attracts half of the trades because when an

investor submits a limit order, he chooses to route his order to platform 1 with probability

1
2 and to platform 2 with probability 1

2 . Moreover, the platform with the highest take fee

(largest θ) displays a higher bid-ask spread but cum fee bid-ask spreads are identical on both
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platforms.

Hence, for a given sequence of investors’arrivals, the dynamics of order flow in the consoli-

dated market (i.e., the set of offers/trades in both platforms) does not depend on the number of

competing matchmakers (holding the total fee constant). Thus, the trading rate in the consoli-

dated market is as given in Corollary 3.13 The second part of the proposition shows that if both

platforms coexist, they must display the same cum fee spread, which implies that the platform

charging the highest take fee must have a smaller traded bid-ask spread.14 We discuss further

this implication of the model in Section 5.4.

Let Πj(f j , f−j ;λ) be the expected profit of matchmaker j for a given choice of its fee (f j),

the fee chosen by its competitor (f−j) and the order processing cost in the dealer market. Using

Proposition 3, we deduce that

Πj(f j , f−j ;λ) =



TR(f, λ)× f if f j < f−j ,

0.5× TR(f, λ)× f if f j = f−j ,

0 if f j > f−j .

(14)

The next proposition provides the Nash equilibrium of the game in which the two matchmakers

simultaneously choose their trading fees and obtain payoffs given by (14). We focus on the case

λ > λ4 as otherwise the dealer market crowds out the matchmakers.

Proposition 4 : If λ > λ4, both matchmakers optimally choose a zero total fee for any value

of the bid-ask spread in the dealer market. The breakdown of this fee for each matchmaker is

13 In equilibrium, makers use limit orders with the same execution probabilities on both platforms. For instance,
if they submit a limit order with high fill rate on platform 1, they also do so when they submit limit orders on
platform 2. Thus limit order fill rates are as given in Corollary 2.
14 In addition, the ask price of, say, platform 1 may be equal or smaller than the bid price on platform 2 if the

make fee on platform 1 is negative. This “locked”or “crossed”markets quotes do not constitute an arbitrage since
the true cost of trading cum fees are equal in the two markets. Crossed and locked quotes do arise in reality and
several commentators have linked this apparent ineffi ciency to the practice of subsidizing makers (see Schmerklen
(2003), “Nasdaq’s battle over locked crossed markets,” in Wall Street Technology).
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indeterminate (i.e., any menu (fta,j , fma,j) such that fta,j +fma,j = 0 can be sustained in equilib-

rium). The type of equilibrium in the consolidated limit order market is as given in Proposition

1 in the particular case in which f = 0.

Thus, as conjectured, competition among matchmakers drives their trading fee to zero. In the

next section, we show that this is not necessarily good for investors: for some parameter values,

imposing a floor on the trading fee can make them better off.

5 Implications

5.1 Should market forces alone determine exchange fees?

Regulators sometimes intervene in the determination of exchange fees. For instance, in the U.S.,

the SEC has capped take fees at $0.0003 per share traded in 2006, as part of RegNMS and is now

considering imposing a similar cap in in options market. For a fixed value of the trading fee, this

amounts to capping θ in our model. This type of intervention is very controversial. For instance,

in reaction to a proposal by the SEC of capping take fees in the option market, GETCO (a major

proprietary trading firm) writes:

“GETCO believes that market forces should determine exchange fees and that the Commission

should not allow itself to be drawn into "rate fixing" or "price fixing". Rather, the Commission

should allow the power of free markets to set exchange pricing.”(see “Comments Regarding NYSE

Arca’s Proposed Rule Change to Amend its Schedule of Fees and Charges (SR-NYSEArca-2008-

075”)

Should one exclusively rely on market forces for the determination of trading fees or is there

room for “rate fixing” by the regulators? To study this question, let W (λ, f) be the expected

ex-ante gains from trade for an investor, i.e., before the investor learns his type (buyer/seller and

impatient/patient) and whether he will act as maker or taker (this depends on the state of the
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market when he arrives in the market). A maker trades on the limit order market when he is

matched with a taker. Thus, the likelihood that an investor trades on the limit order is equal

to the likelihood of a trade in this market, whether the investor ends up being the maker or the

taker in this transaction. Thus, in absence of “waiting costs” for makers (i.e., δL = δH = 1),

W (λ, f) is the average of (a) the sum of the total gains from trade when a transaction takes

place on the limit order market (i.e., Gl), and (b) the investor’s surplus when a transaction

takes place on the dealer market, Gd, weighted by the probabilities of each possibility in each

period.15 Let, Wbase(λ, f) = TR(f, λ)Gl+(1− 2TR(f, λ))Gd be this weighted average.16 When

δj < 1, an investor’s welfare is smaller than this base level because makers incur a waiting cost.

Computations yield (see the Internet Appendix for the details):

W (f, λ) = Wbase(λ, f)− (1− δ)
(
TR(f, λ)× (L−f+Sc/2) + (1− 2TR(f, λ)− ϕ5)×Gd

)
︸ ︷︷ ︸

Waiting Costs

(15)

where δ is a weighted average of patient and impatient discount factor and ϕ5 is the likelihood

that an investor chooses to trade on the dealer market upon arrival. Investors’ex-ante welfare

does not depend on the make/take fee breakdown because this breakdown does not affect the

trading rate in the limit order market in equilibrium.

Corollary 4 There exist two thresholds λ̂a ∈ (λ3, λ2] and λ̂b ∈ (λ2, λ3] such that a trading fee

equal to f = f3(λ) + ε (where ε is very small but positive) maximizes investors’ welfare when

λ ∈ (λ3, λ̂a] or λ ∈ (λ2,λ̂b]. Otherwise, investors’welfare in equilibrium is maximal when f = 0.

15To understand why, observe that a maker trades on the limit order market when he is matched with a taker.
Thus, the likelihood that an investor trades on the limit order is equal to the likelihood of a trade in this market,
whether the investor ends up being the maker or the taker in this transaction. As a result, in absence of waiting
costs, an investor’s welfare is the likelihood that a trade takes place on the limit order market times the total
surplus in this case plus the likelihood that a trade takes place on the dealer market times the investor’s surplus
in this case.
16 In each period, a trade happens on the dealer market if (a) the trader arriving in this period immediately trade

in the dealer market or (b) the limit order placed in the previous period does not execute. Hence, the likelihood
of a trade on the dealer market is ϕ

5
(f, λ) +

(
ϕ1(f, λ) + ϕ3(f, λ)

)
(1− FR(f, λ)) = 1− 2TR(f, λ), where the last

equality is readily obtained using the expression for ϕj given in the proof of Corollary 3.
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Thus, there exist values of the parameters for which investors’ex-ante expected welfare in

equilibrium is maximized when the trading fee is strictly positive. This finding is counterintuitive

since, obviously, an increase in the trading fee reduces the gains from trade available to investors.

There is however a less obvious effect: as explained previously, an increase in the trading fee

can induce makers to post offers with a higher fill rate. For instance, suppose that f = 0 and

that λ ∈ (λ3,λ1). In this case, the equilibrium is such that patient investors are specialized and

impatient investors unspecialized. Patient investors choose limit orders with a low execution

probability (φL, see Figure 3) to extract more surplus from takers in case of execution. Now

suppose that the trading fee is increased from f = 0 to a level slightly above f3(λ). This increase

induces makers to post offers with a higher fill rate (φH , see Figure 3). This is welfare improving

because a high likelihood of execution for limit orders reduces the number of states in which

makers’s waiting cost is paid needlessly. This effect dominates the reduction in gains from trade

due to the higher trading fee when λ3 < λ ≤ λ̂a or λ2 < λ ≤ λ̂b.

Hollifield et al.(2006) show empirically that unfilled limit orders are one important source of

ineffi ciency in limit order markets. This is also the case in our setting since makers with unfilled

limit orders bear a waiting cost without return on this investment (they end up trading in the

dealer market, something they could have done right upon arrival without sinking the waiting

cost). For some parameter values, an increase in the trading fee can alleviate this ineffi ciency

because it induces makers to choose limit orders with a higher execution probability.

Table 2 illustrates this finding with a numerical example. For the values of the parameters in

Table 2, we have λ3 = 0.802, λ2 = 0.95 and λ̂a ≈ 0.84. We therefore show investors’welfare when

f = 0 (second column) and f = f3(λ) + ε (third column) for different values of λ in [0.802, 0.95].

For instance when λ = 0.82, investors’welfare with a zero fee is equal to about 0.32. It is possible

to increase this welfare by 8.5% by setting a fee equal to f = 0.18. This is a relatively large fee
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since in our example L = 1, so that the fee accounts for about 9% of total gains from trade when

there is a trade on the limit order market.

[Insert Table 2 about here]

Corollary 4 raises the intriguing possibility that competition among matchmakers may be

detrimental to investors. Indeed, for values of λ ∈ [λ3, λ1], the equilibrium with two matchmakers

is such that limit orders’fill rate is low whereas a single matchmaker always sets its fee such that

the fill rate is high. Thus, a priori, a market structure featuring a single matchmaker coexisting

with a dealer market (preventing the matchmaker from extracting a too large rents from investors)

may dominate the market structure with two competing matchmakers. However, as shown in the

next corollary, this never happens because a single matchmaker’optimal fee is always too high.

Corollary 5 For all values of the parameters, investors are better off with access to two compet-

ing matchmakers rather than a single matchmaker.

Hence, there is a range of values for λ (λ ∈ (λ3, λ̂a] or λ ∈ (λ2,λ̂b]) where market forces will

not result in the optimal trading fee for investors: with competition among two matchakers, this

fee can be too low (Corollary 4) whereas with competition between a single matchmaker and a

dealer market, this fee is always too high (Corollary 5). For this range of values for λ, regulatory

intervention can make investors better off. The intervention can consists simply in imposing a

floor, equal to f
floor

= f3(λ) + ε, on the fee charged by the matchmakers, as shown by the next

corollary.

Corollary 6 When λ ∈ (λ3, λ̂a] or λ ∈ (λ2,λ̂a], investors’welfare is maximal with two competing

matchmakers and a floor on the trading fee equal to f3(λ) + ε.
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5.2 Should limit order markets co-exist with OTC markets?

In the aftermath of the subprime crisis, the G-20 leaders stated that all standardised over-

the-counter (OTC) derivatives contracts should be traded on exchanges or electronic trading

platforms by the end of 2012.17 The effects of such a drastic change in market structure are much

debated, in part because the costs and benefits of limit order markets relative to OTC markets

are not well understood.18 One basic question is whether there are cases in which imposing

concentration of trading in either a limit order market or a dealer market is optimal.

Our model can be used to study this question. We consider three possible policies: (i) impose

concentration of trading in limit order markets, (ii) impose concentration of trading in the dealer

market, or (iii) authorize trading in both market structures (the “hybrid”market structure). We

only consider cases in which investors have access to two matchmakers when trading in limit order

markets is authorized since this market structure always dominates that with a single matchmaker

(Corollary 5). The next proposition gives the policy that maximizes welfare for each value of λ.

Corollary 7 :

1. When λ ≤ λ4, investors’welfare is maximal when the regulator imposes concentration of

trading in the dealer market.

2. When λ > λ4, depending on the parameters π, δH , δL: either investors’welfare is maximal

when the regulator authorizes the hybrid market structure or there exists λ̄ ∈ (λ4, λ1) such

that for λ ∈ [λ̄, λ1[ investors’welfare is maximal when the regulator imposes concentration

of trading in limit order markets and maximal in the hybrid market structure otherwise

17See Statement No. 13, Leaders’Statement: The Pittsburgh Summit (September 24 —25, 2009), available at
http://www.g20.org/ Documents/pittsburgh_summit_leaders_statement_250909.pdf
18There are many aspects of this debate that are beyond the scope of this paper. For instance, trades

on electronic markets are cleared through central clearing counterparties, which reduces counterparty risk.
This risk plays no role in our model. For an overview of standard costs and benefits of OTC mar-
kets, see, for instance, the report of the International Organization of Securities Commission available at
http://www.iosco.org/library/pubdocs/pdf/IOSCOPD345.pdf
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(i.e., for λ ∈ (λ4, λ̄)
⋃

[λ1, L]).

As explained previously, liquidity provision is costly in both trading mechanisms: in the

dealer market, dealers bear an order processing costs whereas makers bear a waiting cost in

the limit order market. Imposing concentration of trading in the dealer market is optimal for

investors when the order processing cost is low enough relative to patient investors’waiting cost,

λ ≤ λ4 = L(1 − δH). Indeed, one benefit of the dealer market is that it enables traders to save

on waiting costs.

Now suppose that λ > λ4 and suppose that the regulator imposes concentration of trading in

limit order markets (the G20 proposal). This situation is as if L = λ. In this case, the equilibrium

is always such that both patient and impatient investors are unspecialized (see Figure 3). Thus,

the fill rate for limit orders and the trading rate are high. Relative to this market structure,

the hybrid market has costs and benefits for investors. One benefit is that it enables investors

with high waiting costs to trade immediately in the dealer market rather than posting a limit

order if the limit order market is not suffi ciently liquid when they arrive in the market. This is

what impatient investors do when λ ∈ [λ4, λ2]. Another benefit is that it mitigates the cost of

non execution for makers since they can contact dealers in last resort to execute their trades.

But precisely for this reason, makers optimally post offers with a low execution probability when

λ ∈ [λ3, λ1]. As explained previously, this is detrimental to welfare. For this reason, there is a

range of value for λ (λ ∈ [λ̄, λ1[) for which investors are better off when the dealer market is

banned.

[Insert Table 3 about here]

Table 3 illustrates Proposition 7 for the same parameter values as in Table 2. For these

parameter values, λ4 = 0.11, λ3 = 0.80, λ2 = 0.95, λ1 = 0.98 and λ̄ = λ3. Thus, the optimal

organization for investors features two competing matchmakers operating in parallel with a dealer
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market for λ ∈ [λ4, λ3] or λ > λ1, a single dealer market when λ < λ4, and two competing

matchmakers without a dealer market for λ ∈]λ3, λ1[.

5.3 Bid-Ask Spreads and Make/Take Fees

In recent years, much regulatory attention has been devoted to make and take fees and whether

these fees should be regulated or even banned. This regulatory focus may have been misplaced

however if, as implied by our model, the make/take fee breakdown, θ, is neutral, i.e., if it has

no effect on market participants’welfare. At first glance, this proposition looks counterintuitive:

for instance, rebates for makers should make them better off since they get a payment in case

of execution. Moreover, some market participants argue that these rebates also benefit takers

because they result in smaller bid-ask spreads.19 This effect is present in our model: an increase

in θ leads to a smaller traded bid-ask spread (Corollary 1). However, the traded bid-ask spread

always adjusts to neutralize the effect of a change in θ on the cum fee bid-ask spread, so that

makers and takers’payoffs in equilibrium do not depend on the make/take fee breakdown. This

yields the following testable implication.

Implication 1: Holding the total trading fee constant, an increase in the take fee (i.e., an

increase in θ) reduces the traded bid-ask spread but it has no effect on the cum fee bid-ask spread.

Testing Implication 1 however is tricky because changes in the make/take fee breakdown

usually coincide with a simultaneous change in the total fee (f). One can therefore wrongly

attribute the observed changes in cum fee bid-ask spreads as being due to the change in make

and take fees whereas in reality these changes are driven by the total fee. To see this trap, observe

that the second part of Corollary 1 has the following implication.

Implication 2: A cut in the total fee reduces the cum fee bid-ask spread whether the reduction
19See again for instance GETCO’s “Comments Regarding NYSE Arca’s Proposed Rule Change to Amend its

Schedule of Fees and Charges,”available at http://www.getcollc.com/index.php/getco/commentletters/
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in the total fee is due to a cut in the make fee, a cut in the take fee or a mix of the two.

[DISCUSS WHY SMALL]

We illustrate this point with a numerical example. In Table 4, e compare the traded bid-ask

spread and the cum fee bid-ask spread in equilibrium for two different trading fees, f = 0.2

and f = 0.1. In the first case, the trading fee is equally split between makers and takers. In

the second case, we consider two distinct scenarios: in the first scenario, the platform subsidizes

makers while in the second scenario it subsidizes takers. Now suppose that the trading platform

reduces its fee from f = 0.2 to f = 0.1. In the first scenario, there is a drop in the traded bid-ask

spread and the cum fee bid-ask spread. As the drop in the total fee is achieved through the

payment of a rebate to makers, it is tempting to attribute the reduction in the cum fee bid-ask

spread to this rebate. This conclusion is misleading however: the same reduction in the cum fee

bid-ask spread can be obtained by paying a rebate to takers rather than to makers reducing, as

seen by considering the second scenarioo in Table 4. What matters is the reduction in the total

fee, not whether this reduction is achieved through a smaller make fee or a smaller take fee.

Insert Table 4 about here

Table 4 also shows that a reduction in the make fee and a reduction in the take fee have

opposite effects on the traded bid-ask spread: the reduction in the make fee reduces the traded

bid-ask spread while the reduction in the take fee increases it. This is another testable implication

of the model which follows from the expressions for the traded spread given in Lemma ??.20

Implication 3. A cut in the take fee increases the traded bid-ask spread while a cut in the

make fee reduces the bid-ask spread. Thus, the effect of a cut in the total fee on the traded bid-ask

spread depends on whether this cut is achieved by decreasing the take fee or the make fee.

20For this implication, we assume that the platform chooses directly the make fee, fma, and the take fee, fta,
rather than θ, as otherwise we cannot vary the make fee independently of the take fee. This is innocuous since
eventually the traded bid-ask spread can be written directly as a function of fma and fta.
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Consider an increase in the take fee, fta. Other things being equal, this increase reduces

one-for-one the concession that investors are willing to pay to trade upon arrival with a market

order. That is, buyers’cut-offprices decline and sellers’cut-offprices increase, each by an amount

equal to the take fee (see equations (1) and (2)). As a consequence, investors submitting limit

orders must post more attractive quotes and the traded bid-ask spread narrows. This reduction in

bid-ask spreads implies that the expected payoff with a limit order drops, which makes investors

more willing to pay a concession for immediate execution. This indirect effect partially, but not

fully, countervails the initial change in investors’cut-off prices and the bid-ask spread. Thus, the

net effect of an increase in the take fee is to reduce the traded bid-ask spread.

Now consider the effect of an increase in the make fee. Other things equal, an increase in the

make fee reduces the expected payoff of investors submitting limit orders. As a consequence, all

investors are ready to pay larger concessions to get immediate execution. That is, other things

being equal, the buyers’cut-off price increases and the sellers’cut-off price decreases when the

make fee increases (see equations (1) and (2)). This effect enables investors submitting limit

orders to charge less competitive quotes, unless their quotes are constrained by those posted in

the dealer market. But this constraint does not binds only when λ ∈ [λ3, λ1]. Thus, the net effect

of an increase in the make fee is to increase the traded bid-ask spread.

The testable implications derived in this section do not depend on whether we consider a

single matchmaker or two competing matchmakers. Indeed, the second part of Proposition 3

implies that if two matchmakers charge the same total fee, the traded bid-ask spread should

be smaller on the platform with the highest take fee and the cum fee bid-ask spread should be

identical on both platforms. This is just another way to state Implication 3. Moreover, if one

platform reduces its total fee, as in the thought experiments considered in Implications 4 and 5,

then it attracts all trades and everything is as if there was a single platform.
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It is often argued that a trading platform can increase its market share by tilting its make/take

fee breakdown in favor of makers. The reasoning is that a low make fee attracts limit orders who

then attract market orders. Proposition 3 (and Implication 1) does not vindicate this argument:

the market share of a matchmaker is independent of its make/take fee breakdown, θj , and only

determined by its total fee relative to its competitor’s fee. To see why, suppose that initially both

platforms have the same make/take breakdown and suppose that platform 2 decides to shift this

breakdown in favor of makers by setting θ2 > θ1. Other things being equal, the cut in the make

fee on platform 2 increases makers’expected payoff on this platform. But, for this reason and the

fact that the take fee is higher on platform 2, traders now require more attractive quotes to place

a market order on platform 2. Thus, the traded spread on platform 2 must drop relative to the

traded spread on platform 1. In equilibrium, this drop fully neutralizes the change in make/take

fees and the cum fee bid-ask spread is identical on both platforms. At this point, the division of

gains from trade between makers and takers is identical in both markets (as cum fees quotes are

identical) and makers are therefore indifferent between routing their limit orders to platform 1

or platform 2.

In 2005, the Toronto Stock Exchange implemented a new fee structure for a subsets of stocks

listed on this market. Specifically, it started paying a rebate to makers and charged a fixed take

fee of $0.0004 per share. Relative to the previous fee structure, this change was a clear reduction

in trading fee for makers and an increase in the trading fee for takers, for stocks trading below

$22. In contrast, the fee paid by takers was reduced for stocks trading above $22. These changes

in make and take fees also affected the total exchange fee. This total fee increased for stocks

with a price below $6.875 and decreased for stocks with a price above $6.875. Malinova and Park

(2011) provides a detailed empirical analysis of the effects of these changes on various measures

of bid-ask spreads. Interestingly, their findings fit well with our predictions. In line with our
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Implication 3, Malinova and Park (2011) find that effective spreads declined significantly for

stocks that experience an decrease in their make fee and an increase in the take fee (stocks with

a price less than $22) but not for stocks for which the make fee and the take fee declined (see

their Table 3). Second Malinova and Park (2011), Table 5 finds that the cum fee bid-ask spread

increased significantly for stocks that experience an increase in the total exchange fee (i.e., stocks

with a price below $6.875). In contrast, the cum fee bid-ask spread declines (not significantly)

for other stocks. These observations are consistent with our Implication 2.

Neutrality of make/take fee breakdown: exploit Nasdaq platforms.

5.4 Other empirical implications

Another testable implication of our model is that the trading fee charged by the platform affects

the execution probabilities of limit orders. This implication is important as ultimately this is this

effect which explains why counter-intuitively an increase in the trading fee can raise investors’

welfare. Indeed, as explained in Section 3, the trading fee affects the relative payoffs of limit

orders with high and low execution probabilities. As a result an increase in the trading fee can

lead investors to switch from using limit orders with low execution probabilities to limit orders

with high execution probabilities (or vice versa). Consistent with this implication, Malinova and

Park (2011) find that stocks affected by the change in the trading fee on the Toronto Stock

Exchange (see previous section) experienced an increase in their fill rate.

Relatedly, the model also implies that a decrease in trading fee can trigger a drop in the

likelihood of direct trades among investors as it induces makers to post quotes with a lower

execution probability. For this reason, as shown by the next corollary, entry of a new limit order

market could simultaneously force platforms to cut their fees and increase the fraction of trades

taking place OTC. This is rather counter-intuitive since the cut in trading fees would appear to

make trading on the limit order market more attractive.
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Corollary 8 Suppose λ > λ4 and that initially only one matchmaker coexists with the dealer

market.

1. When λ3 ≤ λ < λ2, entry of a new matchmaker reduces the trading rate in the consolidated

limit order market (i.e., increases the market share of the dealer market).

2. Otherwise, entry of a new matchmaker increases the trading rate in the consolidated limit

order market or has no effect on this rate (i.e., decreases the market share of the dealer

market or has no effect on this share).

Thus, the model predicts that entry of a new limit order market can result in an increase

in the OTC market share (first part of Corollary 8). European equities markets offer an ideal

setting to test this implication. Indeed, until 2007, there was almost no competition for order

flow among stock exchanges in Europe. Very much as in the baseline model, investors could trade

a firm’s stock only in one limit order market (usually the domestic market of the firm) or on the

OTC market. This situation changed in 2007 with the implementation of new rules (MiFID)

facilitating the entry of new trading platforms (Chi-X, BATS etc...). As a result, trading fees

have considerably decreased since 2007. Anedoctal evidence suggest that this decline coincides

with an increase in the market share of OTC equities market for E.U stocks.21 At first glance,

this evolution is puzzling since one would expect the drop in trading fees to make trading in limit

order markets more attractive. Yet, it is a possibility in our model.

6 Conclusion

In this paper, we show that trading fees in a limit order market are more than just transfers from

investors to owners of the market. Indeed, they indirectly affect makers’market power relative

21For instance, in Europe, the market share of OTC trading in equities markets is estimated at 36% (see FESE
(2011)).
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to takers and as a consequence the execution probabilities chosen by investors submitting limit

orders. In particular, an increase in the trading fee on a limit order market has a non monotonic

effect on limit order fill rates. Actually, this increase reduces the surplus to be split between

makers and takers in each transaction. Thus, for a fixed division of this surplus, it makes

the outside option of takers (an immediate trade in a dealer market) more attractive. As a

consequence, makers’market power is reduced, which, for some parameter values, induces them

to make offers with a higher execution probability. For this reason, a decrease in trading fees

(due for instance to competition among limit order markets) does not always result in a higher

market share for the limit order market or higher expected gains from trade (as unfilled limit

orders result in a welfare loss).

We also use the model to analyze the effect of differentiating trading fees between makers

and takers. This is important since the maker-taker pricing model is very controversial in the

securities industry and the economic rationale for this business model is not well understood.

Moreover, recently, the joint CFTC-SEC task force on the flash crash of May 2010 has advocated

differentiating make and take fees according to market conditions: “A peak load pricing solution

to encouraging liquidity could have both access fees and rebates rise in turbulent markets. If

one Exchange has a higher access fee than another, then it will get fewer aggressive liquidity

demanding trades. If an exchange has a higher rebate, it will get a disproportionate share of

liquidity supplying limit orders to fill out its book.”(see Summary report of the joint CFTC-SEC

Advisory Committee on Emerging Regulatory issues, p.9).22

In our model, for a fixed trading fee, a change in the make/take fee breakdown affects the

raw bid-ask spread but it leaves the cum fee bid-ask spread unchanged. For this reason, it leaves

the division of gains from trade between makers and takers unaffected. Thus, the make/take fee

breakdown is neutral: it has no effect on traders’order placement strategies, trading volume and

22Access fees is another name for take fees and rebates here refer to negative make fees.
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welfare with and without competition among matchmakers. Only the total fee matters.

We see this irrelevance result as a useful benchmark to identify conditions under which make

and take fees would matter. For instance, in our setting, makers face no constraints on the prices

that they can post. In reality, these prices must be posted on a grid with a fixed minimum price

variation (e.g., 1 cent in the U.S). With such a friction, makers cannot fully neutralize the effect

of a change in the make/take fee breakdown and this breakdown should therefore start playing

a role. Foucault, Kadan and Kandel (2009) develop a theory of optimal make/take fees in this

case. However, in their theory, investors cannot choose between limit and market orders. An

interesting extension of our analysis would be to analyze the optimal make/take fee breakdown

in presence of a minimum price variation and check whether and how this breakdown could vary

with market conditions, as suggested by the joint CFTC-SEC report.

Appendix

Proof of Proposition 1. First, we observe that the condition fk−1(λ) < f ≤ fk(λ) is equivalent

to κk−1 < Γ(λ, f) ≤ κk where Γ(λ, f) ≡ Gd

Gl
= L−λ

2L−f . Under Condition C.1, the set of parameters

values such that κk−1 < Γ(λ, f) ≤ κk is never empty. Second, observe using equation (5) that in

equilibrium:

V ∗(δL) =

(
δL
δH

)
V ∗(δH). (16)

The steps to find the conditions under which a given type of equilibrium is obtained are

identical for each type of equilibrium. For brevity, we just detail these steps for types #1 and #2

equilibria. We provide the derivations for the other types of equilibria in the Internet Appendix.

Type #1 equilibrium: Assume that Γ(λ, f) ≤ κ1. In a type #1 equilibrium, all investors use

limit orders and investors choose buy and sell limit orders with high fill rates. This implies (see

equation (5)) that V ∗(δL) > Gd and that V ∗(δH) solves :
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V ∗(δH) = δH

(
φH(Gl − V ∗(δH)) + (1− φH)Gd

)

Solving this equation and using the fact that φH = 1
2 , we get

V ∗(δH) =
δH

2 + δH
(Gl +Gd). (17)

Now, we check that the conditions to obtain a type #1 equilibrium are satisfied.

First, it must be the case that V ∗(δL) > Gd. using equations (16) and (17), we find that this

condition is equivalent to:

Gd

Gl
≤
(

δL
2 + δH − δL

)
, (18)

which is satsified because Γ(λ, f) ≤ κ1 ≤
(

δL
2+δH−δL

)
.

Second we check that submitting limit orders with a high execution probability is optimal

for investors. We just need to check this for, say, patient investors since impatient and patient

investors always choose limit orders with the same execution probabilities (if they place one), as

observed in the text. Thus, we must check that

V ∗(δH) > δH

(
φL(Gl − V ∗(δL)) + (1− φL)Gd

)
.

That is, using equation (16),

V ∗(δH) > δH

(
φL(Gl − δLδ−1

H V ∗(δH)) + (1− φL)Gd
)
.

After some algrebra, using equation (17) and the fact that φL = 1−π
2 , we rewrite this condition
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as

Gd

Gl
≤ [2π − (1− π)(δH − δL)]

[2π + (1 + π)δH − (1− π)δL]
, (19)

that is Γ(λ, f) ≤ κ1.

Type #2 equilibrium: Assume that κ1 < Γ(λ, f) ≤ κ2. In a type #2 equilibrium, all investors

use limit orders and investors choose buy and sell limit orders with low fill rates. This implies

that V ∗(δL) > Gd and that V ∗(δL) solves (see equation (5)):

V ∗(δL) = δL

(
φL(Gl − V ∗(δL)) + (1− φL)Gd

)

Solving this equation and using the fact that φL = 1−π
2 , we get

V ∗(δL) =
δL

2 + δL(1− π)

(
(1− π)Gl + (1 + π)Gd

)
. (20)

Now, we check that the conditions to obtain a type #2 equilibrium are satisfied. First, using

equation (20), it is easily checked that V ∗(δL) ≥ Gd iff Γ(λ, f) ≤ κ2 as assumed in this case.

Second, we check that submitting limit orders with a low execution probability is optimal for all

investors. We just need to check this for, say, impatient investors since impatient and patient

investors always choose limit orders with the same execution probabilities (if they place one), as

already observed. Thus, we must check that

V ∗(δL) > δL

(
φH(Gl − V ∗(δH)) + (1− φL)Gd

)
.

After some algrebra, using equation (17) and the fact that φH = 1
2 , we rewrite this condition as

[2π − (1− π)(δH − δL)]

[2π + (1 + π)δH − (1− π)δL]
<
Gd

Gl
, (21)
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that is Γ(λ, f) > κ1.�

Proof of Lemma 1. Suppose that 0 ≤ f < f1(λ). In this case, the equilibrium is of type #1.

In both cases, investors choose limit orders with a high execution probability. Thus, in these

cases:

A∗ = Â(δH),

B∗ = B̂(δH).

Using equations (1) and (2) and the fact that V ∗(δH) ≥ Gd (as otherwise patient investors would

not submit limit orders), we deduce that in quilibrium

A∗ −B∗ = vH − vL − 2fta − 2V ∗(δH).

Substituting V ∗(δH) by its expression (see equation (17) in the proof of Proposition 1), we obtain

A∗ −B∗ = 2

(
L− θf − δH

2 + δH
(3L− f − λ)

)
if 0 ≤ f < f1(λ).

Other cases are analyzed in the same way. For instance, when f1(λ) < f < f2(λ), a type #2

equilibrium obtains and investors submit limit orders with low execution probabilities. Thus:

A∗ −B∗ = Â(δL)− B̂(δL) = vH − vL − 2fta − 2V ∗(δL).

We can then obtain the expressions for the bid-ask spread by replacing V ∗(δL) by its expression

in a type #2 equilibrium (equation (20)). For brevity we relegate analyses of the other cases to

the Internet Appendix.�
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Proof of Corollary 1. Direct using the expressions for the quotes in Lemma 1.�

Proof of Corollary 2. For each value of the trading fee, we deduce the corresponding equilib-

rium type using Proposition 1. Limit order fill rates then follow from Table 1.�

Proof of Corollary 3. Consider the market for the security at date τ . At this date, this market

can be in six possible states: (0) closed because the asset has already paid its cash-flow; (1)

active, a patient investor arrives and submits a limit order; (2) active, a patient investor arrives

and submits a market order; (3) active, an impatient investor arrives and submits a limit order;

(4) active, an impatient investor arrives and submits a market order; (5) active, an impatient

investor arrives and trades upon arrival in the dealer market. Transitions from one state to

another follows a Markov chain with the following transition matrix, P̂k

P̂k =

 1 0′

(1− ρ)1 ρM̂k

 .

where 0 and 1 are 5×1 vectors and M̂k is a 5×5 matrix that depends on the type of equilibrium,

k. For instance, given investors’decisions in an equilibrium of type #1, we have

M̂1 =



π
2

π
2

1−π
2

1−π
2 0

π 0 1− π 0 0

π
2

π
2

1−π
2

1−π
2 0

π 0 1− π 0 0

π 0 1− π 0 0


.

As state 0 is absorbing it is clear that after some time the process will be in state 0 and the

only stationary distribution of this process gives a weight of 1 to this state (that is, the market

closes with probability 1 when ρ < 1).

41



Let us modify the matrix M̂k by deleting rows and columns corresponding to states that are

never entered (for instance state 5 in a type #1 equilibrium) so that the matrix, now called Mk,

is indecomposable, and let Pk be the transition matrix with this modified matrix. For instance

M1 =



π
2

π
2

1−π
2

1−π
2

π 0 1− π 0

π
2

π
2

1−π
2

1−π
2

π 0 1− π 0


,

and

P1 =

 1 0′

(1− ρ)1 ρM̂k

 .

Now, we define [q0k(τ),q′k(τ )] as the probability distribution over all states at time τ in an

equilibrium of type k and we denote by dk(τ ) the probability distribution overall all states

conditional on the process not having been absorbed, that is,

dk(τ ) ≡ qk(τ )

1− q0k(τ )
.

If dk(τ + 1) = dk(τ ) = dk, then dk is called a stationary conditional distribution. Darroch and

Seneta (1965) show that dk is the left eigenvector of ρMk corresponding to the maximum-modulus

eigenvalue of ρMk. In our setting it is easy to see that dk is just the stationary distribution

associated with Mk.23 We call ϕk this distribution, to which we add a 0 for each state we

deleted when rewriting M̂k as Mk. Thus, ϕkj is the stationary probability of state j at any date

23Because this vector is by definition associated with the eigenvalue 1, Mk being stochastic this is the maximum-
modulus eigenvalue.
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conditional on the cash-flow of the security not being paid at date τ and we obtain

ϕ1 =

(
2π
3 ,

π
3 ,

2(1−π)
3 , 1−π

3 , 0

)
,

ϕ2 =

(
π, 0, (1−π)(2−π)

3−π , 1−π
3−π , 0

)
,

ϕ3 =

(
π, 0, 0, π(1−π)

2 , (1−π)(2−π)
2

)
,

ϕ4 =

(
2π

2+π ,
π2

2+π , 0, π(1−π)
2+π , 2(1−π)

2+π

)
.

The corollary then follows from equation (13) and Proposition (1). For instance, if 0 ≤ f < f1(λ)

then the equilibrium is of type 1. Thus, ϕ2(f, λ) = π
3 and ϕ4(f, λ) = 1−π

3 so that TR(f, λ) = 1
3 .�

Proof of Proposition 2. The optimal fee for a monopolist matchmaker belongs to {f1(λ),

f2(λ), f4(λ)}. If the platform chooses a fee equal to fk(λ) then a type k equilibrium is obtained.

The expected profit of the platform is then Π(fk(λ), λ) = TR(fk(λ), λ) × f(λ). Using the

expression for fk(λ) (equation (8)) and TR(f, λ) (Corollary 3), we obtain that

Π(f1(λ), λ) ≥ Π(f2(λ), λ)⇔ L− λ
2L

≤ 2π

(3− π)κ−1
1 − 3(1− π)κ−1

2

⇔ λ ≥ λ′1,

Π(f1(λ), λ) ≥ Π(f4(λ), λ)⇔ L− λ
2L

≤ 2(1− π)

(2 + π)κ−1
1 − 3πκ−1

4

⇔ λ ≥ λ′2,

Π(f2(λ), λ) ≥ Π(f4(λ), λ)⇔ L− λ
2L

≤ 2(1− 2π)

(1− π)(2 + π)κ−1
2 − π(3− π)κ−1

4

⇔ λ ≥ λ′3.

The first and the second part of the proposition follows.�

Proof of Corollary 4. Suppose that λ ∈ [λ3, λ2). In this case, using Corollary 3 (for the

trading rate), Lemma 1 (for the cum fee bid-ask spread), and the proof of Corollary 3 (to obtain

ϕ1 and ϕ2), we deduce

W (λ, 0) = L(1− π(1− δH))− λ(1− π(1− δHπ))
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and

limε→0+W (λ, f3(λ) + ε) =
(L− λ)

(2 + π)(2π − δH(1− π))

(
4π(1− π) + δH(7π2 + π − 2)

)
.

Let us define ∆W (λ) =limε→0+W (λ, f3(λ) + ε) −W (λ, 0). Under C.1, ∆W (λ) is linearly de-

creasing in λ and ∆W (λ3) > 0. Depending on the parameters, under C.1, ∆W (λ2) can be either

positive or negative. Thus there exists λ̂a ∈ (λ3, λ2] such that ∆W (λ) ≥ 0 iff λ3 < λ ≤ λ̂a. We

can proceed in the same way when λ ∈ [λ2, λ1) (see the Internet Appendix).�

Proof of Corollary 5. The proof consists in showing that W (0, λ) > W (f
∗
(λ), λ) where f

∗
(λ)

is given in Proposition 2. This is tedious but straightforward since investors’welfare is a linear

function of λ. See the Internet appendix for the detailed proof. �

Proof of Corollary 6. Competition among two matchmakers drives their fee to the floor sets

by regulators if this floor is positive. Thus, using Corollary 4, we deduce that setting a floor equal

to f3(λ) + ε maximizes investors’welfare when λ ∈ (λ3, λ̂a] or λ ∈ (λ2,λ̂a].�

Proof of Corollary 8. To be written.

Proof of Corollary 7. The proof relies on direct comparisons of investors’ welfare under

the different market structures. Although writing investors’welfare in each market structure is

tedious, comparing the value of investors’welfare in each market structure is straightforward

since investors’welfare is a linear function of λ. See the Internet appendix for the detailed proof.

�
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TABLES

Investor’s Welfare

Zero Trading Fee Trading Fee: f3(λ) + ε Difference (%)

Order Processing Cost: λ

0.81 0.33 0.36 9%

0.82 0.32 0.34 8.5%

0.85 0.30 0.29 -2.2%

0.88 0.27 0.23 -17%

0.90 0.26 0.19 -25%

Table 2: Trading fee and investors’welfare. For each value of λ shown in the table, we give investors’ex-ante

expected gains from trade in the first best (column 2), , when the trading fee is zero (column 3) and when the

trading fee is sligthly above f3(λ) (ε = 10−9). Other parameter values are L = 1, δH = 0.885, δL = 0.067

and π = 0.297.
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Investor’s Welfare

Regulatory Policy

Hybrid Limit Order Trading Only Dealer Market Only

Order Processing Cost: λ

0.2 0.82∗ 0.35 0.8

0.5 0.60∗ 0.35 0.5

0.7 0.45∗ 0.35 0.3

0.82 0.32% 0.35∗ 0.18

0.99 0.35% 0.35∗ 0.01

Table 3:Market Structure and Investors’welfare. For various values of λ, we give investors’ex-ante expected

gains from trade in the first and in various market structures; "MMD": a monopolist matchmaker with a dealer

market; "CMD": Two competing matchmakers with a dealer market; "CM": Two competing matchmakers; "D":

a dealer market only (no matchmakers). A superscript "*" indicates which structure is optimal for each value of

λ. Other parameter values are L = 1, δH = 0.885, δL = 0.067 and π = 0.297.

f = 0.2 f = 0.1

Scenario 1 Scenario 2

fma = fta = 0.1 fta = 0.15;fma = −0.1 fta = −0.1; fma = 0.15

Traded Spread 0.54 0.38 0.88

Cum Fee Spread 0.74 0.68 0.68

Table 4: Effect of a cut in the exchange fee on the traded bid-ask spread and the cum fee bid-ask spread.

Parameter values are L = 1, δH = 0.8, δL = 0.5, λ = 0.6, and π = 0.2.
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Figure 1
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Evolution of Fees for Tape A stocks (i.e., listed on the NYSE) on 4 platforms: 
EDGX, BATS, Nasdaq, NYSE from March 07 to December 10  

NYSE

0 0005

0.001

ak
e 

+ 
T

ak
e 

Fe
e

Nasdaq
EDGX

0

0.0005

3/1/200

7/1/200

11/1/20

3/1/200

7/1/200

11/1/20

3/1/200

7/1/200

11/1/20

3/1/201

7/1/201T
ot

al
 F

ee
s=

M
a BATS

-0.001

-0.0005

07 07 007

08 08 008

09 09 009

10 10T

-0.0015



FIGURE 2
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