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Your descendants would have been like the sand, your children like its 
numberless grains; their name would never be cut off nor destroyed from 
before me. 

                                               Isaiah 48:19 
 
 
 
Introduction 

 
 Most economic models take preferences as exogenously given. A large body 

of economic and psychological literature is devoted to the experimental and empirical 

estimation of preferences. However, until recently much less attention has been given 

to the question of why preferences are what they are. This question is interesting and 

important not only because it yields insights into understanding why we behave as we 

do, but also because it provides a theoretical foundation for the 

experimentally/empirically focused investigation of preferences. Evolutionary 

economics is a framework in which this question is addressed. 

 Attitudes towards risk are most likely affected by education, age and life 

experience. However, more and more evidence is accumulating about the central role 

of genetics in determining preferences. Empirical studies have shown that the asset 

allocation of identical twins are much more correlated than those of twins who are not 

identical. Furthermore, the asset allocations of identical twins who where raised apart 

are also highly correlated (see Cesarini et. al. 2009, 2010, and Barnea, Cronqvist, and 

Siegel 2010). In recent years biologists and economists have identified specific “risk-

attitude” genes (see Kuhnen and Chiao 2009, and Zhong et. al. 2009). If preferences 

are (at least partially) genetically determined, one can view preferences as the result 

of an evolutionary process selecting for the evolutionary most advantageous risk 

attitude. This is the approach taken by several studies that have yielded profound 
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insights into the evolution of preferences1, and it is also the approach taken in the 

present paper. 

 In an evolutionary context, organisms can be viewed as vessels for carrying 

their genes (Dawkins 1989).  Genes are “successful” if they manage to perpetuate 

from one generation to the next. Thus, one possible evolutionary “objective function” 

that can be considered is the maximization of the expected number of offspring – the 

more offspring, the more copies of the organism’s genes are transmitted to the next 

generation. While this is a simple and intuitively appealing objective function, it may 

lead to unreasonable results. To illustrate, consider the following simplified example. 

Suppose that there are only two possible reproduction prospects or “gambles” to 

choose from. Gamble A yields 0 offspring with probability 0.3 and 2 offspring with 

probability 0.7. Gamble B yields 0 offspring with probability 0.8 and 9 offspring with 

probability 0.2. Suppose also that there are two types of preference genes: gene A that 

implies the preference of gamble A, and gene B that implies the preference of gamble 

B. 2 Assume that the gamble realizations are independent across individuals.3 Then, 

after T generations the expected number of individuals with gene A will be 

  TT ... 41270030  , while the expected number of individuals with gene B will 

be T.81 . Clearly, after some time the expected number of individuals with gene B 

becomes much larger than that of gene A, and the ratio of the expected numbers goes 

to infinity as T . This may be interpreted as “B dominates the population in the 

long run”, and it is the motivation for the expected number of offspring criterion.  

                                                 
1  See, for example, Meginniss (1977), Sinn and Weichenrieder (1993), Rogers (1994), Robson (1996, 
2001a, 2001b), Samuelson (2001), Curry (2001), Sinn (2003), Schlesinger (2003), and Robson and 
Samuelson (2007). For an excellent recent review see Robson and Samuelson (2010). 
2 As is typical in this simplified framework, reproduction is assumed to be asexual, i.e. the offspring 
have the same preferences as their parent (the relaxation of this assumption is discussed in section V). 
3  In addition to this idiosyncratic randomness, individuals and species may also be exposed to “macro” 
or aggregate environmental risk. Robson (1996) discusses the relation between idiosyncratic risk and 
aggregate risk in detail. This point is also discussed below. 
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However, it is far from obvious that this criterion is evolutionary advantageous. 

Note that in the above example population B has a much larger probability than 

population A of becoming completely extinct. Let us elaborate. A direct calculation of 

the probability that A’s line becomes extinct is quite cumbersome, because there are 

infinitely many possible realizations that lead to extinction.4 Fortunately, it is much 

easier to solve this problem recursively. Let us denote the probability that the line of 

descendants of an individual with gene A will become extinct by Ax .  It is possible, 

with probability 0.3, that the initial individual will have no offspring, and this will 

imply the end of his line of descendants. However, even if he survives to have 2 

offspring, (and this occurs with probability 0.7), it is possible that the lines of both of 

these offspring will eventually become extinct.  As the offspring carry gene A, for 

each one of them the probability that his line of descendants will eventually become 

extinct is also by definition Ax . As the gambles are assumed to be independent, the 

extinction of one offspring is independent of the extinction of the other, and therefore 

the probability that both lines eventually become extinct is 2

Ax . Thus, Ax  is the 

solution to: 

 27030 AA x..x  ,        (1) 

which yields 4280.xA  . This value captures all of the possible scenarios leading to 

eventual extinction. The probability of A Having Descendants Forever, )HDF(pA , is 

given by 57201 .x)HDF(p AA  . Similarly, the probability that individual B’s 

line of descendants eventually becomes extinct is given by the solution to: 

 92080 BB x..x  .        (2) 

                                                 
4  For example, one possible scenario for extinction is that the original parent has two offspring, each 
one of these offspring has two offspring, but in the third generation all four offspring die. Of course, 
there are infinitely many such scenarios leading to extinction, and the probability of extinction, xA, is 
the sum of probabilities for all these events. 
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Solving eq.(2) numerically yields 8430.xB  , which implies 

15701 .x)HDF(p BB  . Thus, while the ratio of the expected population of A to 

the expected population of B converges to zero as T , type A has a much higher 

probability of surviving forever. How can these two facts be reconciled? Note that as 

T  becomes large the probability distribution of the number of B descendants becomes 

very skewed – there is a large probability that B will become extinct, but there is a 

small probability that B will have a very large number of descendants. This extreme 

low-probability event drives the high expected value of B descendants.  

 This situation is very reminiscent of the issue of comparing investments for 

the long run. While the investment with the highest one-period expected return yields 

the highest expected dollar payoff for any date T, as T  the investment with the 

highest geometric mean return almost surely yields a higher dollar payoff than any 

other investment (including that with the higher expected return). Again, this is due to 

the skeweness of the distribution (see Latané 1959, Samuelson 1971, Hakansson 

1971, and Markowitz 1976). Indeed, several authors have suggested the geometric 

mean growth rate as an evolutionary objective function. Note, however, that if there is 

some probability of extinction (a total return of 0 in the investment context), the 

geometric mean is 0, and the comparison of gambles becomes meaningless.5  

 Extinction plays an obvious central role in the evolutionary dynamics. One 

may suspect, though, that once the population of a given type reaches a certain size 

the probability of extinction in the i.i.d. reproduction framework is negligible. 

However, the p(HDF) criterion may be very important even when the number of 

individuals in each preference type is large. Consider, for example, the types A and B 

discussed above. Suppose that there are 100 individuals with risk preference gene A, 

                                                 
5 One way to address this issue is to assume some probability of switching between types. See Robson 
1996. 
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and 100 individuals with gene B. Furthermore, assume that individuals carry many 

other genes other than the risk preference gene, i.e. each individual represents a 

unique combination of genes (or alternatively, each “individual” actually represents a 

sub-type). After many generations, out of the 100 sub-types carrying gene A, on 

average 57.2 will survive (recall that 572.0)( HDFpA ) . In contrast, out of the 

initial 100 sub-types carrying gene B, on average only 15.7 will survive. Thus, the 

preference for higher p(HDF) maintains more genetic diversity, which is an obvious 

evolutionary advantage. For example, environmental conditions may drastically 

change, making only a very small number of sub-types viable. The type with more 

genetic diversity has a higher probability to survive such a change.  

 Each of the different evolutionary objective functions employed in the 

literature has its advantages. We do not presume to determine that maximizing 

p(HDF) is the “correct” objective function, nor that it is the only one that should be 

considered. Our standpoint is that the p(HDF) criterion likely plays an important role 

in the evolutionary process, and should therefore be given careful consideration. The 

viewpoint that both the number of descendants and the p(HDF) are important is 

beautifully captured by the quotation from Isaiah 48:19, given at the beginning of the 

paper. The blessing is composed of two parts: the first is the promise of many 

descendants (like the number of grains of sand); the second is the promise of Having 

Descendants Forever (their name would never be cut off). The two parts have 

different meaning, and both parts are important. 

To the best of our knowledge, the first to introduce the concept of HDF to 

economics was Meginniss (1977), who analyzed p(HDF) in the framework of a 

constant birth probability per unit time and a constant death probability per unit time. 

Perhaps surprisingly, in the long time that has passed since Meginniss’s innovative 
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work, the p(HDF) criterion has not received much attention6. The purpose of this 

paper is to develop the concept of p(HDF) in a general setting, and to examine the 

implications of this criterion for the evolutionary foundations of preference. 

 The structure of this paper is as follows. Section I provides the general 

framework. In section II we show that maximizing p(HDF) implies risk averse 

behavior – if reproduction gamble A dominates gamble B by Second degree 

Stochastic Dominance (SSD) then  pA(HDF) > pB(HDF). In other words, individuals 

who maximize p(HDF) always act as risk averters. In section III we investigate which 

of the commonly employed risk-averse utility functions best approximates the goal of 

maximizing p(HDF). We find a very close fit between CRRA preferences and the 

behavior implied by p(HDF) maximization. This implies that CRRA preferences can 

be viewed as a heuristic evolutionary developed to maximize p(HDF). Section IV 

discusses the relationship between the p(HDF) criterion and loss aversion. Section V 

extends the analysis to sexual reproduction and mutation. Section VI concludes.  

 

I.    Framework of Analysis 

 A reproduction “gamble” is given by a set of probabilities corresponding to 

each possible number of offspring. The gamble G denoted by:  

G=  N,p,;,p;,p N10 10       (3) 

implies probability 0p  for 0 offspring, probability 1p  for 1 offspring, etc. Such a 

gamble can be viewed as representing a composite lottery resulting from all the 

decisions faced by the individual throughout reproductive life. A lifelong gamble G 

can result from different “local” rules or different dynamic strategies. For example, a 

local rule could be: “accept a 50-50 chance of losing one offspring or gaining three 

                                                 
6  A few exceptions are Lesourne (1977) and  Rubin and Paul (1979). 
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offspring”. A dynamic strategy could be of the type “be very risk-averse until you 

have 2 offspring, but once you have 2 offspring become risk-neutral”. Any such local 

rules or dynamics strategies (and their combinations) can be summarized by a lifelong 

gamble G. The relationship between the local rules and dynamic strategies and the 

resulting lifelong gamble is a potentially complex issue. In most of this paper we 

focus on the set of lifelong gambles, and the preference among them. In Section IV 

we discuss the implications of the p(HDF) criterion to the local concept of loss 

aversion. 

 Assume asexual reproduction and that the realizations of gambles are 

independent across individuals. Consider a set of gambles offered by Nature. The 

preference of the individual (or his risk-attitude gene) dictates which of these gambles 

he will choose. Given the choice of a gamble G, the probability that the individual’s 

line of descendants will become extinct, x, is given by the solution to: 

  N
N xpxpxppx  2

210 ,     (4) 

which is a straightforward generalization of the examples described by eq.(1) and (2).7 

The probability of Having Descendant Forever given the choice of the gamble is 

given by x)HDF(p  1 , where x is the solution to eq.(4). In the general case, there 

is no analytical solution to eq.(4).  However, some general properties of the solution 

can be determined. First, note that 1x  is one possible solution (recall that ip are 

probabilities, i.e. 1
0

 

N

i ip ; hence with 1x  both sides of eq.(4) are equal to 1). 

This solution of 1x  is degenerate – it is the uninteresting case of extinction with 

certainty. The economically interesting solutions are those for which 10  x . There 

is at most a single solution in this range. Figure 1 illustrates why: while the left hand 

                                                 
7 The process (3) is known as a Galton-Watson (1875) branching process. Eq.(4) is the solution to the 
extinction probability in this process, see for example, Harris (1989) and Athreya and Ney (1972). 
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side of eq.(4) is the diagonal of the unit square, the right hand side 

N
N xpxpxpp)x(f  2

210 is a convex function crossing the y axis at 0p . In 

addition, 11 )(f , as explained above. Thus, )x(f crosses the diagonal at most once, 

as shown in Figure 1. This crossing point, if it exists, is the economically interesting 

solution (and if it does not, x=1 is the only solution and the gamble leads to extinction 

with certainty). Such a non-trivial solution exists if and only if the expected number 

of offspring is greater than 1.8 

(Please insert Figure 1 about here) 

 In the next sections we investigate the properties and implications of the 

solution to eq.(4) in more depth. In Section II we show that maximization of p(HDF) 

implies risk aversion. In section III we compare the maximization of p(HDF) with the 

maximization of expected utility with various standard risk-averse utility functions by 

a numerical examination of the solutions to eq.(4). 

 

II. p(HDF) and Risk Aversion    

 From an evolutionary standpoint, the objective function is defined in terms of 

the number of offspring. Standard economics defines utility in terms of consumption. 

Of course, there is a close relation between consumption and the number of offspring 

– the more resources at an individual’s disposal, the more offspring he can raise. 

While the exact relation between the level of consumption and the number of 

offspring is not obvious, here we adopt the standard, and the most simple, assumption 

that raising each offspring requires a certain level of consumption, C, and hence the 

                                                 
8 The crossing point of f(x) and the diagonal exists iff f’(1)>1, i.e. f(x) approaches the diagonal from 
below at 1 (see Figure 1). f’(1)=p1+2p2+…+NpN, i.e. it is the expected number of offspring. 
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number of offspring is proportional to consumption9. Thus, the reproduction gamble 

 N,p,;,p;,p;,pG N210 210  translates into a consumption gamble 

 NC,p,;C,p;C,p;,pG N20 210  which yields an expected utility of :                       

                             



N

i
iG CiUpEU

0

)( .       (5) 

The evolutionary economics framework views the utility function U as a decision-

making tool developed to accommodate the deeper evolutionary objective function of 

genetic survival. Our purpose here is to link the evolutionary objective of p(HDF) 

maximization with the properties of the utility function U.  

Theorem 1 :   

If Gamble A dominates Gamble B by Second degree Stochastic Dominance 

(SSD), then )HDF(p)HDF(p BA  . Thus, a p(HDF) maximizing agent always 

acts as a risk-averter. 

 

Proof: 

The proof makes use of the concept of a Probability Preserving Spread (PPS), defined 

below. Consider the following general  reproduction gamble: 

   N,p,;j,p;j,p;j,p;;,p Njjj  110 110   .  

Applying a PPS Δ-spread to this gamble at j changes the gamble to: 

 N,p,;j,p;j,p;j,p;;,p Njjj  1210 110   . 

i.e., the PPS shifts probability from pj symmetrically to pj-1 and pj+1. 0  is always 

chosen such that the probabilities remain non-negative after the spread. This concept 

of a PPS is in the spirit of the Rothschild and Stiglitz (1970) Mean Preserving Spread, 

                                                 
9 This assumption clearly does not hold in modern human societies, where the relationship between 
wealth and number of offspring is often reverse. However, it is probably a reasonable approximation 
for the era during which our preferences have evolved, and indeed, this is the assumption made in most 
studies. For example, Sinn (2003) writes: “… it is assumed that the number of children a parent has is 
proportional to the amount of resources he commands”.  
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with the difference that they apply the spread to the outcomes, keeping the mean 

outcome invariant, whereas here we apply the spread to the probabilities, keeping the 

total probability 1 (but the mean outcome may change).  

Theorem 1 is based on the following two lemmas, proven in the Appendix: 

Lemma 1: If reproduction gamble A dominates gamble B by SSD, then A can be 

transformed into B by a series of PPS, plus a shift of probability from the outcome of 

having N offspring to the outcome of having only N-1 offspring. 

Lemma 2:  A PPS decreases the probability of having descendants forever.  

Thus, starting with gamble A we reach gamble B by a series of PPS, where 

each PPS decreases p(HDF), and finally by a shift of probability from the outcome of 

having N offspring to the outcome of having only N-1 offspring, which again also 

decreases the p(HDF). Therefore, if A dominates B by SSD it follows that 

)HDF(p)HDF(p BA  .    

The above statement is true for any two gambles where A SSD dominates B. 

This implies that if the choices of a p(HDF) maximizing agent are always consistent 

with those of a risk-averter: if A is preferred to B by all risk-averters, it is guaranteed 

that the p(HDF) maximizing agent will also choose A. 

                                                            Q.E.D. 

 The intuition of this result is that shifting probability from the outcome of, say, 

three offspring to the outcome of four offspring increases the p(HDF), but not as 

much as the decrease in p(HDF) caused by shifting the same probability from the 

three-offspring outcome to the two-offspring outcome. This resonates with the notion 

of decreasing marginal utility, but note that in the evolutionary framework things are 

somewhat more complex, as we can speak in terms of “the utility from an additional 
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offspring”, only in the statistical sense of the impact of changing the probability for a 

particular number of offspring on p(HDF). 

 Theorem 1 implies that individuals genetically “programmed” to maximize 

p(HDF) will act as risk-averters: they will always choose reproduction gambles from 

the SSD efficient set. However, p(HDF) maximization actually gives us more 

information about preferences. Given a set of gambles, the SSD efficient set will 

typically include several of these gambles (see, for example, Levy 2006). However, 

any individual maximizing p(HDF) will choose a single specific gamble from this 

efficient set – the gamble that maximizes the p(HDF).10 Is there a risk-averse utility 

function U that will always yield the gamble with maximal p(HDF) as the gamble 

maximizing expected utility? In other words, other than the general property of risk-

aversion, can p(HDF) maximization give us more information on preference? To this 

question we turn next. 

 

III. p(HDF) and Constant Relative Risk Aversion 

 The evolutionary framework of maximizing p(HDF) is fundamentally 

different than the standard expected utility framework. In the latter, individuals are 

endowed with some utility function defined over consumption (or possibly over the 

number of offspring), and they act to maximize their expected utility. In the former, 

there is no utility function, only a criterion to choose among a set of possible gambles. 

Can these two very different frameworks be reconciled? Is there some utility function 

U that when plugged into eq.(5) will always imply the same choices among prospects 

as maximization of p(HDF)? Stated differently, suppose that evolution has indeed 

shaped us to maximize p(HDF). Now, when we attempt to describe behavior with the 

                                                 
10 Except in the unlikely event that two gambles yield exactly the same p(HDF). In this case the 
individual will be indifferent between the two gambles. 
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expected utility framework, what utility function will provide the best description of 

behavior? 

 Unfortunately, as there is no general analytical solution to eq.(4), we cannot 

analytically derive a utility function that will perfectly mimic p(HDF) maximization.  

However, we can numerically examine the choice implied by p(HDF) maximization 

and compare it with the choice implied by various utility functions typically employed 

in the literature. This is the idea of the analysis described below.  

 We employ two approaches to investigate the relation between various utility 

functions and the p(HDF) criterion. In the first approach, we randomly draw 1,000 

reproduction gambles of type (3), (i.e. 1,000 vectors of p’s), and for each gamble we 

numerically calculate both the p(HDF) and the expected utility for various utility 

functions. We take the maximal possible number of offspring as N=10, and we draw 

each one of the p’s independently from a uniform distribution on [0,1]. After the 11 

p’s are drawn, they are normalized so that 1
0

 

N

i ip .11 As the choice is invariant to 

a linear transformation of the utility function in the expected utility framework, we are 

not concerned with the absolute EU value, but only with the correlation between the 

EU value (as given by eq.(5)) and the p(HDF). The higher the correlation, the closer 

the utility function fits the p(HDF) criterion. In the extreme, a correlation of +1 

implies that the utility function perfectly describes the ranking and choice by the 

p(HDF) criterion.  

 We examine the utility functions that are most commonly employed in the 

economic literature: linear preference, the negative exponential, the power utility 

function, and the quadratic utility function. While the negative exponential is popular 

because of its analytical tractability, it implies Constant Absolute Risk Aversion 

                                                 
11 E.g. after all the p’s are drawn, we divide each one of them by 

N

i ip
0

. 
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(CARA), which is considered by most as unrealistic.12  The power utility function, 

which includes the logarithmic utility as a special case, implies Constant Relative 

Risk Aversion (CRRA).  This is the utility function for which there is the most 

empirical and experimental support (see, for example, Friend and Blume 1975, Kroll 

and Levy 1992, and Levy 1994), and it is probably considered the most realistic.  The 

quadratic function has the advantage of justifying the mean-variance framework even 

when the return distributions are not normal, but it has the very undesirable 

implication of Increasing Absolute Risk Aversion (IARA). A well-known alternative 

to the EU framework is Prospect Theory (PT). In PT the decisions are based not on 

absolute values (of money, consumption, or the number of offspring), but rather on 

changes of these values relative to the status quo. Thus, the PT framework can be 

thought of as a “local” rule, rather than a rule for choosing among lifelong 

alternatives. We discuss the relation between such local rules and the resulting 

lifelong distribution in the next section. 

 Figure 2 describes EU as a function of p(HDF) for the above discussed utility 

functions.13 While there is a general positive correlation between EU and p(HDF) for 

all four utility functions, for the linear, exponential, and quadratic functions (panels a-

c) the fit is far from perfect. The results shown here are typical for the results obtained 

with other parameter values.14 In contrast to these results, for the CRRA preference 

                                                 
12  See, for example, Markowitz, Reid, and Tew 1994. 
13 For example, consider a prospect G as given by eq.(3). Employing eq.(5) to calculate the Expected 

Utility for linear preferences yields: 



N

i

iG ipCEU
0

. For CRRA preferences we obtain: 





N

i

iG ip
C

EU
0







, etc. In all cases the value of C does not affect the correlation between EU and 

p(HDF), and we take this value as C=1. 
14 Note that for the quadratic utility function 2bWW)W(U   the parameter b must not exceed 

maxW/ 21 , otherwise utility is declining with wealth. Here the maximum outcome is N=10, and we 

must have b<1/20. Figure 1c shows the results for the maximal b value, but similar results are obtained 
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the correlation is very high. Thus, CRRA preference is an almost perfect proxy for 

p(HDF) maximization.  

 In order to check the robustness of this result, we first examine the fit over a 

larger range of p(HDF) values. In Figure 2, we have p(HDF)>0.7 for all gambles. In 

order to examine prospects with higher extinction probabilities, we extend the range 

from which p0 is drawn15. The results are shown in Figure 3. With the potential for 

high p0 values, we now obtain prospects with p(HDF) over the entire possible range 

between 0 and 1. As panel a shows, the fit to the CRRA utility function remains very 

good across the entire range.  

 The next question is what is the best RRA parameter   to use. Note that in our 

framework we must have 0 , because one of the possible outcomes is 0, and the 

CRRA function is not defined in this case if  0 . Thus, the value of 050. in 

panel a represents the lower end of possible   values. Panels b and c show the results 

for the values 30.  and 80. respectively. The fit remains very good for 30. , 

but for higher values of   the fit deteriorates for gambles with high p(HDF). These 

and similar experiments with other   values lead us to conclude that CRRA 

preferences fit p(HDF) maximization very well for RRA values in the range of 

500 .  . 

(Please insert Figures 2 and 3 about here) 

 In the second approach we employ, we analyze the probability that employing 

the EU criterion leads to a wrong choice by the p(HDF) criterion. To do so, we 

randomly draw two gambles, and check whether the EU ranking is the same as the 

p(HDF) ranking. We report the percentage of times that errors are made by employing 

                                                                                                                                            
with lower values. Note that for b 0 the quadratic preference converges to the linear preference 
shown in Figure 1a. 
15 We take the range of p0 as [0,8] before normalization, see footnote 11. 
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the EU criterion. Obviously, if the p(HDF) of one prospect is much higher than that of 

the other,  we can say that one prospect is “much better” than the other, and it is not 

very likely that the EU criterion will imply a reverse ranking. Generally, we would 

expect that the closer the prospects are in terms of their p(HDF), the more likely that 

EU will lead to a mistake. In Figure 4 we report the error rates as a function of the 

difference p  between the p(HDF)’s of the  two prospects, 

)HDF(p)HDF(pp BA   . As expected, the error rate decreases with p  for all 

utility functions. More importantly, the error for the CRRA preference is much lower 

than the error rates of all the other utility functions, and this holds for all values of 

p . This result is consistent with and reinforces the previous findings –  EU 

maximization with CRRA preferences provides a very good approximation for 

p(HDF) maximization.  

(Please insert Figure 4 about here) 

 CRRA preferences are considered by many researchers as the most realistic 

description of behavior within the expected utility framework, and it is the preference 

assumed in many cornerstone economic models. Thus, it is very encouraging, and 

also quite surprising, to find that this preference can be viewed as a result of the 

evolutionary process of selecting for p(HDF) maximization. 

 

IV. Loss Aversion and p(HDF) 

 Expected utility is defined in terms of the absolute level of consumption (or 

wealth). Similarly, the p(HDF) maximization framework is defined in terms of the 

absolute number of offspring. These absolute values are appropriate for the choice 

between lifelong alternatives. In contrast, the concept of loss-aversion, a key element 

of the celebrated Prospect Theory, is defined in terms of changes relative to a given 
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status-quo reference point. The loss-aversion framework generally contradicts the 

expected utility framework. However, as we shall see below, it may be consistent with 

the p(HDF) framework, and it can even be viewed a “local” heuristic implied by 

p(HDF) maximization. The key difference between the lifelong framework and the 

local framework is that in the local framework the gamble is considered as a unique 

one-time idiosyncratic opportunity that is not expected to repeat, and does not affect 

the p(HDF) of each of the offspring. The difference between the lifelong framework 

and the local framework is similar to the difference between the lifelong expected 

utility maximization framework and the local Prospect Theory heuristic. 

 The most simple formulation of loss aversion is by a piecewise-linear value 

function of the type: 

   








0

0

xforx

xforx
)x(V      (6) 

where x is the change of wealth relative to the current wealth, 1  is the loss-

aversion parameter, and the objective is the maximization of )]x(V[E .16  

 Consider a prospect that yields +C with probability p or –C with probability 

(1-p), where C is the consumption needed to grow one offspring. Then, according to 

the loss-averse value function (6), this prospect will be accepted if and only if : 

p



1

.17       (7) 

                                                 
16 Benartzi and Thaler (1995) employ this streamlined formulation. Prospect Theory (Kahneman and 
Tversky 1979, Tversky and Kahneman 1992) models V(x) as concave for x>0 and convex for x<0, and 
also allows for subjective probability weighting. We abstract from these features here for the sake of 
simplicity. 
 
17 The expected value with the gamble is: C)p(pCEV  1 . The gamble is accepted if and only if 

this EV is larger than 0 (the expected value of the status quo), i.e. if )p(p  1 , or p



1

. 
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For any loss-averse individual ( 1 ) the prospect will not be accepted unless 

p/ 21 . The more risk averse the individual, the higher the p required in order for 

the gamble to be accepted. 

 Now consider this prospect in the p(HDF) framework. If the gamble can be 

repeated many times, it is clear that any gamble with p>1/2 should be accepted, 

because of the law of large numbers. Thus, it only makes sense to think of this gamble 

as a unique one-time opportunity. This is in contrast to the lifelong gamble in eq.(3) 

and the formulation of eq.(4), where preferences for gambles affect not only the 

parent, but also all of his descendants, i.e. they all have the same x. Here, the 

acceptance/rejection of the one-time gamble is assumed not to affect the extinction 

probability, x, of the offspring.  These distinctions are at the heart of the difference 

between the lifelong-decision framework as discussed in the previous section and the 

expected utility framework, and the “local” one-time gamble framework discussed 

here. 

Consider an individual that has n offspring, each with a probability of 1-x of 

HDF and a probability of x of having his line of descendants eventually becoming 

extinct. The individual is offered the above idiosyncratic one-time gamble.  If the 

gamble is not taken, the individual has a probability of nx1  of HDF. If the gamble 

is accepted, with probability p the individual will have one more offspring, and with 

probability (1-p) he will have one less offspring. Thus, if the gamble is taken p(HDF) 

becomes  11 11   nn x)p(px . The gamble is accepted if and only if it increases 

p(HDF), i.e. if: 

     nnn xx)p(px   111 11     (8) 

i.e if  

 11 1   nnn x)p(pxx  
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or:  

  )p(pxx  12 .       (9) 

First, note that the acceptance/rejection of the prospect does not depend on the initial 

number of offspring, n.  This is a non-trivial point, which conforms with the loss-

aversion notion of relative rather than absolute levels. The decision depends only on 

the probability p for a favorable outcome in the gamble, and the probability of each 

offspring eventually  becoming extinct, x. Solving (9) we find that the gamble is 

accepted if and only if: 

  p
x


1

1
.18                  (10) 

For p1/2 the gamble is refused for any value of 10  x , i.e. if the gamble is fair 

(or worse) it is refused, in line with the notion of loss aversion. 

 Eq.(10) implies that the smaller x is, the larger the probability p required to 

make the gamble acceptable. The intuition for this is as follows. An addition of one 

offspring increases p(HDF) less than the reduction of one offspring diminishes it. This 

is why a fair gamble is not accepted, and why p must be larger than 1/2 for the gamble 

to be accepted. If x is close to 1, the difference between 1nx and 1nx  is not very 

large, and therefore p does not have to exceed 1/2 by much. However, if x is small the 

above difference is (relatively) large, and p must be large to compensate. In other 

words, when most offspring are likely to have descendants forever, an additional 

                                                 
18  Eq.(9) can be written as:  

012  )p(xpx . The expression on the r.h.s.  is an upward facing parabola, so the x's solving 

eq.(9) are those between the two roots of the equation 012  )p(xpx . These roots are: 

 
.x

p

p
x

p

)p(

p

p

p

)p(p
x , 1

1

2

121

2

121

2

1411
21

2

21 











  Thus, any x in the 

relevant range 0<x<1 that satisfies p/)p(x  1  also satisfies eq.(9). Rearranging, we obtain: 

p
x


1

1
. 
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offspring does not contribute much to p(HDF), but a reduction of one offspring does 

have a large effect on p(HDF). Thus, a large p is required to make the gamble 

acceptable.   

 Comparing eqs.(7) and (10) reveals that 
x1

1
 plays the role of 



1

. 

Simplifying the relation between x and  , we obtain: 

 


 1

11

1






x

x
.                (11) 

Hence, 
x

1
 plays the role of the loss-aversion parameter  .  

 One may view loss-aversion as a “local” heuristic aimed at maximizing 

p(HDF). This may suggest an evolutionary explanation for loss-aversion. 

Experimental and empirical estimates of the loss-aversion parameter   typically yield 

values close to 2.2 (see Kahneman, Knettsch and Thaler (1990), Tversky and 

Kahneman (1991,1992), Pennings and Smidts (2003), Levy (2009)). This value 

translates by eq.(11) to an x value of 450221 ../x  . This suggests that loss-

aversion has evolved in an era where the typical value of x was approximately 0.45, 

i.e. the value of p(HDF) was about 0.55. This value is close to the average value of 

0.54 empirically estimated for Mexico and Israel by Keyfitz and Tyree (1967) .19 

   

V. Mutation and Sexual Reproduction 

 Up to this point we have assumed asexual reproduction and no mutations, i.e. 

we have assumed that the extinction probability, x (and its complimentary p(HDF)=1-

x), are the same for the parent and its offspring. Sexual reproduction and mutation 

                                                 
19 They estimate a lower p(HDF) value of 0.20 for the U.S. In general, the average number of children 
per family, and thus the p(HDF), is higher in developing countries relative to developed countries.  The 
former may be more representative of the era over which preferences have evolved. 
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complicate the analysis, because they imply that the offspring’s x may be different 

than that of the parent. These effects can be modeled by: 

  ~xx parentoffspring  ,                 (12) 

where ~  represents the random effects of mutation and the effects of the other 

parent’s genes (not only in the present generation, but all the way down the road – 

recall that x is the probability of extinction of an individual’s entire line of 

descendants). We assume that ~  is uncorrelated across offspring. Let us initially also 

assume that ~  is unbiased, i.e. that 0)~( E .  

 Let us consider first the most simple case where there is at most one offspring, 

and that ~  can take the values   or   with equal probabilities of 1/2. In this case 

the parent’s probability of extinction is given by: 

       xppxppxppx 101010 2

1

2

1
  . 

In the general case, the parent’s probability of extinction is the solution to:             

           (13) 

]~[]~[]~[]~[]~[ ,1,2,21,221,110 NNNN xExEpxExEpxEppx     

where the subscripts of the  ’s denote the different random realization for each 

offspring. As the  ’s are uncorrelated and unbiased ( 0)~( E ) we have: 

 N
N xpxpxppx  2

210 .                (14) 

This is exactly the same equation as equation (4), obtained with no mutation or sexual 

reproduction. Thus, unbiased mutation and sexual reproduction does not change the 

p(HDF) analysis discussed in the preceding sections. 

If the errors are biased, i.e. 0)~( E , eq. (13) can be written as: 

 N*
N

*** xpxpxppx  2
210 ,               (15) 
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where all the )~(E terms are absorbed in the new p*’s. Eq.(15) again has a very 

similar structure to eq.(4), however, note that   

N

i

*
ip

0
may generally be different 

than 1. 

 

VI. Conclusion 

Evolution is a powerful and profound process that can explain many of the 

observed characteristics of plants, animals and humans. An innovative strand of the 

economics literature suggests viewing preferences through the perspective of 

evolution. Most of the studies in this strand take the evolutionary objective function as 

the maximization of the expected number of offspring, or alternatively, as the 

maximization of the geometric mean growth rate. While these objectives are 

appealing and intuitive, in this paper we suggest that careful consideration should also 

be given to another evolutionary objective function: maximization of the probability 

of Having Descendants Forever (p(HDF)). This objective captures elements that are 

absent in the more standard objective functions, elements that are likely to play an 

important role in the evolutionary process, especially when extinction is possible. 

Thus, we view the HDF approach as complementary to the approaches of maximizing 

the expected number of offspring or geometric mean growth rate. The present paper 

explores some of the implications of p(HDF) maximization for preferences. 

 Our main findings are as follows. First, we show that p(HDF) maximization 

implies risk-aversion. This is different than the risk-aversion resulting from a convex 

“production function” for offspring as suggested by some studies. Here risk-aversion 

is implied even when the number of offspring is linear in the consumption. Next, we 

compare p(HDF) maximization with the standard risk-averse utility functions. We 

find very close agreement between the p(HDF) criterion and CRRA preferences. 
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Thus, one may view CRRA preferences as a proxy for an underlying evolutionary 

goal of maximizing p(HDF). These results hold not only in the standard framework of 

asexual reproduction, but also in the case of unbiased sexual reproduction and 

mutation. 

 While the p(HDF) framework is defined in terms of the lifelong distribution of 

the number of offspring, one can also examine the implications of this framework to 

“local” decisions about idiosyncratic one-time prospects. This analysis reveals that 

p(HDF) maximization implies loss-aversion. Furthermore, there is a direct link 

between the p(HDF) and the loss-aversion parameter  . The experimental and 

empirical estimates of  22.  imply a p(HDF) of about 0.55. While this value seems 

low by modern Western standards, it may be reasonable for the era during which our 

preferences have evolved.  

 The concept of risk-aversion has been discussed for hundreds of years. Loss-

aversion has been formalized and documented decades ago. While these properties of 

preference are usually taken as exogenously given, evolutionary economics views 

them as a result of a deeper evolutionary force. Though the evolutionary economics 

approach is only in its first stages of development, it seems that it holds great promise 

of offering a new and different perspective for understanding attitudes towards risk. 
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Appendix 

Proof of Lemma 1:   

Consider the following two prospects: 

F=  N,p,;,p;,p N10 10      and   G=  N,q,;,q;,q N10 10   

(if N is not the same for the two prospects,  one can always take the maximal N, and 

assign probabilities of zero where necessary). Assume that F dominates G by Second 

degree Stochastic Dominance (SSD). This implies that: 

  
j

dt)t(F)t(G
0

0                (A1) 

for all j, where F(t) and G(t) are the cumulative distribution functions of F and G, 

respectively (see, Hanoch and Levy 1969, Rothschild and Stigliz 1970, Hadar and 

Russel 1969, and Levy 2006). For the discrete prospects considered here, we have: 

       
j

jj pp...pjpjjpdt)t(F
0

12210 221                 (A2) 

(see Figure A1 for a graphical illustration of eq.(A2)). Thus, the SSD condition for the 

dominance of F over G translates to:                (A3) 

        1221012210 221221   jjjj qq...qjqjjqpp...pjpjjp

 

 for all j=1,…,N . We can write these conditions as: 

 

    1110110

2210210

11010

000

11

2323

22

 






NNN q...qNNqp...pNNp

qqqppp

qqpp

qp










           (A4) 

The SSD condition as written in eq.(A3) ensures that all of the above  's are positive. 

We prove that one can get from G to F by a series of PPS by constructing the required 

PPS's. First, note that from the first equation in (A4) we have 000  qp . Plugging 



  

this expression into the second equation in (A4) and rearranging yields: 

1011 2   qp . Plugging this expression for 1p  in the third equation in (A4) 

yields:  21022 2   qp . Repeating this for the fourth equation in (A4) we 

obtain: 32133 2   qp . Similarly, it is easy to show by induction that 

jjjjj qp    12 2  for any 12  Nj . 20  Thus, prospect F can be written 

as:  
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NNNN

NNNNN

qp

qp

qp

qp

qp

qp

F












 

(Note that unlike the other p's, Np  is not given explicitly as a function of Nq . Instead, 

from the equality 1
11

  

N

i i

N

i i qp  and the preceding equations we obtain 

12   NNNN qp  ). Let us demonstrate how G can be obtained by applying a 

series of PPS to F. The first PPS to be applied is subtracting 02  from 1p  and adding 

0 to 0p and to 2p . This first PPS yields the following prospect, denoted by the 

superscript 1: 
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20 Assume that iiiii qp    12 2 for all ji 1 , and that 000  qp  and 

1011 2   qp . Plugging these expressions in the 1j th equation in (A4) yields 

jjjjj qp    12 2  , as required. 



  

The next PPS to apply is subtracting 12  from 1
2p  and adding 1  to 1

1p and to 1
3p . 

This yields the new prospect F2: 
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Similarly, subtracting 22  from 2
3p  and adding 2  to 3

2p and to 3
4p  yields: 
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This is repeated until the last PPS at which stage we have: 
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Finally, the last transformation required to obtain prospect G is a shift of probability 

of 1N from 1N
Np  to 1

1



N
Np  , i.e. from the outcome of having N offspring to the 

outcome of having only N-1 offspring.  

 

 



  

Proof of Lemma 2:   

Consider the effect on x of slightly increasing jp  and decreasing 0p by the same 

amount. Expressing 0p  as 


N

i ip
1

1 , equation (4) can be written as: 

 N
N

N

i
i xpxpxppx  



2
21

1

1 .              (A5) 

Differentiating (A5) with respect to jp  we obtain: 
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Rearranging yields: 

   12
321 321
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.             (A6) 

Note that the denominator in eq.(A6) does not depend on j (i.e. it is the same 

regardless of the pj with respect to which x is differentiated). Furthermore, this 

expression is positive – it is equal to )('1 xf , where 

N
N xpxpxpp)x(f  2

210 ; i.e., it is the difference between the slope of the 

diagonal and the slope of  f(x). As )x(f crosses the diagonal from above (see Figure 

1a), this difference is positive at the intersection point.  Thus, we have: 

  )x('f

x

p

x j

j 






1

1
,                                                                                        (A7) 

and as x<1 this derivative is negative. This makes sense: if we increase jp  and 

decrease 0p  we decrease the extinction probability, x (and increase p(HDF)). 

Now, consider the effect on x of an infinitesimal PPS:  

 N,p,;j,p;j,p;j,p;;,p Njjj  1210 110    , 

where    is very small. 



  

The effect of this PPS on x is: 

  11

11

2
1

2 
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

 jjj

jjj

xxx
)x('fp

x

p

x

p

x  .                                  (A8) 

Note that this expression is positive:   is positive by definition,  )x('f1  is 

positive as explained above, and the term  11 2   jjj xxx  is positive because jx is 

a convex function of j. Thus the infinitesimal PPS increases x, i.e. it reduces 

p(HDF)=1-x.  Any PPS that is not infinitesimal can be achieved by a series of 

infinitesimal PPS's, thus, any PPS increases x and reduced p(HDF).  Q.E.D.  

 Note also that a shift of probability from the outcome of N offspring to the 

outcome of N-1 offspring trivially increases x (i.e. it makes the gamble less desirable). 

This is the shift employed in the last stage of Lemma 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 

 

Figure 1 
There is either a unique solution, or no solution, to eq.(4), 
as shown by panels a and b, respectively. 

 

 

 



  

 

Figure 2 
Expected Utility and p(HDF) for 1,000 randomly drawn prospects 
and for various risk-averse utility functions.  

 

 

 

 



  

 

Figure 3 
CRRA Expected Utility and p(HDF) for various values of the RRA 
parameter  .  



  

 

 

Figure 4 
The proportion of errors made by using the EU criterion instead of 
the p(HDF) criterion as a function of the p(HDF) difference 
between the two prospects. CRRA preference dominates the other 
utility functions. 

 

 

 

 

 

 

 

 

 



  

 

 

Figure A1 
The cumulative distribution of a prospect up to the outcome of 3 
offspring. The area under this function, or integral of the cumulative 
function, up to j=3 is given by     210 23 ppp  . In general, the 

area up to point j is given by: 
    12210 221   jj pp...pjpjjp . 


