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Abstract 

 
The primary purpose of this paper is to show that leverage is important to asset pricing.  By testing a 
partial equilibrium model that includes capital structure choices we demonstrate the importance of 
stochastic leverage.  To our knowledge this is the first paper to attempt to directly isolate and analyze 
the effects of aggregate market leverage of the “market portfolio” on asset prices, here S&P 500 equity 
index options.  To do this, first we introduce a methodology for measuring the daily implied market 
value of aggregate debt in the 500 firms comprising the S&P 500 index by using the known face value 
of debt and the market value of aggregate equity.  We emphasize implied market value of aggregate debt 
(similar to implied volatility) from current market option prices and equity prices because this 
methodology is parsimonious, forward looking, and uses only contemporaneous prices.  Second, we 
demonstrate significant effects of stochastic leverage and resultant stochastic equity volatility on equity 
index option prices.  We isolate this pure leverage effect by making a standardized comparison to Black-
Scholes, a partial equilibrium model without leverage, which is a special case of our model with 
leverage.  This standardized comparison of matched pairs of option prices shows the improved results 
occur because of the inclusion of leverage, and are statistically and economically highly significant.  
Next, we demonstrate by similar standardized comparisons that our more parsimonious, stylized model 
results in significant statistical and economic improvements when compared to more complex models 
which omit leverage, but instead attempt to model the distribution of stock price changes by assuming a 
form of stochastic equity volatility and jumps.  We explain the reasons for improvement can be 
attributed to including leverage which provides an implicit rather than explicit model of stochastic 
equity volatility.  Thus fewer parameter estimates are required, aggregate measurement errors are 
reduced, and the inclusion of a term structure of volatility is possible, which is difficult to incorporate in 
explicit models of the equity distribution and difficult to test because of data limitations of 
contemporaneous option data.  
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1.  Introduction 
 

The systemic effects of leverage have been a major focus of concern and study for financial 

markets because of the ongoing credit crisis which began in 2007/8.  This period, called the “Great 

Recession”, has been widely attributed to excess leverage.  Thus, it is timely that this paper’s main 

purpose is to investigate the systemic effects of corporate leverage on asset prices, specifically S&P 500 

equity index option prices.  Here the corporate market’s leverage is that of the 500 firms comprising the 

S&P 500 index which is commonly used as the “market portfolio” by researchers in financial 

economics.  Since options are ultra sensitive to volatility changes, and since changes in the strike prices 

of options which change the inherent option replicating leverage have been shown to cause changes in 

option volatility, options on options are ideal candidates for examining leverage effects on asset prices.  

S&P 500 equity index options, called SPX, are the world’s most widely traded option1

Stylized option models have often been used by researchers to examine leverage effects on bond 

prices and credit spreads.  However, to date this research has not been extended to equity index options.  

While stylized leverage models, like Merton’s (1974) adaption of Black-Scholes, for example, cannot 

perfectly capture the complex nature of the balance sheet or bankruptcy conditions 

, and are 

European, two important features for this study.  The fact that SPX options are the world’s most liquid 

option means they have minimal option price-stock price non-synchronicity.  Furthermore, since SPX 

are European they are without the American early exercise feature which might mask differential 

leverage effects on options with different expirations.   

2, they can and have 

provided useful insights about the effects of leverage on corporate bond prices and credit spreads in 

many academic publications and in practice by firms concerned with credit risk (c.f. Moody’s-KMV). 3

                                                 
1  See CBOE Market Stats 2004.  For perspective, 50 million SPX contracts traded per year is about 200,000 contracts per 
trading day or 30,000 contracts per hour, which means these options trade almost continuously from open to close. 

    

2 It is well known that the “absolute priority” insolvency condition Merton’s (1974) stylistic model imposes on corporate debt 
as an option boundary condition is a tremendous oversimplification of the actual bankruptcy, default or insolvency process. 
3 Simple stylized structural models incorporating leverage effects on bonds priced as options have often been used both by 
practitioners and academic researchers.  First, note that Moody’s purchased KMV’s adaption of Merton’s (1974) stylized 
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In Merton, for example, debt acts as the strike price for stock as a call option.  It has been shown by 

many researchers that increasing in the strike price of a call option results in increases in the volatility of 

that call option price and return.  This well known result can be understood by considering the option 

replicating portfolio where increasing the strike price is equivalent to borrowing more risk free bonds, 

D, and investing less in the risky equity, E, thus increasing leverage and the volatility of the option. 4

When S&P 500 index option trading began in 1983, it was initially thought that the Black-

Scholes model (1973) without leverage should do better at pricing options on a market portfolio of 

stocks than pricing options on the individual stocks in the market portfolio.  Two reasons SPX index 

options should be priced better than individual options by Black-Scholes are because they are European 

options and because the limit distribution of the sum of returns on a large number of random variables is 

more likely to be the normal distribution. 

 

5

It is often thought that biases in Black-Scholes arise because the underlying distribution of the 

state variable is not normal, and exhibits random, not constant or deterministic volatility.  Although 

leverage can produce both effects from economic theory, many papers approach the non-normality of 

the distribution of stock returns by adding models of stochastic volatility.  For example, Heston (1993) 

develops a closed-form stochastic volatility model with arbitrary correlation between volatility and asset 

returns, and demonstrates that this model has the ability to improve on the Black-Scholes biases when 

the correlation is assumed to be negative. 

  However, research has shown Black-Scholes does not price 

these SPX options well.  Much of this research, upon which our paper is based, is described herein. 

6

                                                                                                                                                                         
option approach to leverage.  Moody’s-KMV now licenses and uses the KMV’s Merton approach to analyze leverage effects 
on both individual firms and portfolios of firms.  Second, numerous academic articles have been published which derive and 
test simple stylized option models of corporate bond prices.  See Merton (1974), Geske (1977), Longstaff-Schwartz (1984), 
Leland-Toft (1994), and Colin-Dufresne, Goldstein (1997), all summarized in Eom, Helwege, Huang (2004). 

  This model was difficult to implement because the volatility 

solution required complex numerical analysis, so Heston and Nandi (2000) develop a GARCH volatility 

to render the Heston model “closed form” and show this simplification produces the same results. 

4 See Cox and Rubinstein, 1985, for example.  Change the strike price (debt D) changes the option price (equity E) without 
changing the underlying value (V = D+E) 
5 See Khintchine (1938) and Gnedko and Kolmogorov (1954), who show this convergence to normal is true even if the 
individual random variables are not IID. 
6 Wiggins (1978) and others have also developed arbitrary stochastic volatility models. 
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However, GARCH models rule out using possibly important volatility jumps.  Pan (2002) finds that 

“…the stochastic volatility models of Heston (and Heston and Nandi) are not rich enough to capture the 

term structure of volatility implied by option prices”…, and argues a volatility term structure is 

important. 7

Bakshi, Cao, and Chen (BCC,1997) extend Black-Scholes (BS, 1973) to test three nested models 

of stochastic volatility (SV), stochastic volatility and jumps (SVJ), and stochastic volatility and 

stochastic interest rates (SVSI).  They analyze index options and demonstrate some significant 

improvements to BS, but BCC has a large parameter advantage (9 to 1 for the best model SVJ) over BS 

because they do not allow BS to use a term structure of volatility since BCC cannot use one.  We will 

show that a term structure of volatility is important, and when BS is implemented with one the BCC 

advantage is diminished.  Bates (2000) develops more consistent tests of models with stochastic 

volatility and jumps which also show improvements over BS.  However, Bates states, “these stochastic 

volatility models require extreme parameters that are implausible …, and while the stochastic 

volatility/jump diffusion model fits option prices better, its implicit distributions and jumps are 

inconsistent with the stock index price data.”   

  Dupire (1994) is cited with the first development of a lattice approach to best fit the cross-

sectional structure of option prices wherein the volatility can depend on the asset price, strike price, and 

time.  While this lattice approach of Dupire and others can include a term structure of deterministic 

volatility functions (DTV), these implied tree approaches have been found (Dumas) to work no better 

than ad hoc versions of Black-Scholes.   

Recently, Pan (2002) incorporates both volatility and stock price jumps, with either constant or 

state dependent jump intensity.  In order to estimate these numerous additional parameters which exceed 

the number of available liquid contemporaneous index option prices, Pan must use a strategy which 

integrates the historical stock and option price data, and relies on implied-state, generalized method of 

moments estimation (IS-GMM) in order to measure these risk premia.  While Pan finds more support for 

                                                 
7 See Pan (JFE, 2002), page 31. 
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jump risk premia rather than volatility risk premia, she argues that better representation of the term 

structure of volatility is necessary, especially when pricing options of different maturities.8

 As already mentioned much of the literature described above which followed BS is based on the 

idea that the distributional assumption of stock returns being normally distributed with a constant or 

deterministic conditional volatility is not realistic.  For example, the equity distribution is observed to be 

asymmetric, with a fat left tail and thin right tail, which cannot occur with the normality assumption.  

There exists extensive empirical evidence of a persistent inverse relation between the level and returns 

on equity and the instantaneous conditional equity volatility, for both individual firms and for indexes 

(c.f. Christie, 1982, and Nelson, 1991).  Black (1976) argued this inverse relation was caused by 

stochastic leverage induced by stock price changes. 

   

 Three other papers that have empirically tested models of the effects of leverage on asset prices 

are by Toft and Prucyk (TP, JF, 1997), Ericsson and Reneby (ER, JB, 2002), and Geske and Zhou (GZ, 

2008).  TP (1997) adapt a version of Leland and Toft (LT, JF, 1996) to individual stock options, and 

using ordinary regression in cross-sectional tests they demonstrate significant correlations between their 

model’s variables and the individual firm volatility level and slope for a 13 week period in 1994 for 138 

firms in their final sample.  However, TP do not investigate the extent of option pricing improvement 

attributable to leverage by comparison to either BS or more complex models which omit leverage.  ER 

(2005) use a simple and consistent option approach and a maximum likelihood methodology developed 

by Duan (1999) to measure the value and volatility of the firm and the leverage effects on bond prices. 

GZ (2008) use the option on option approach of this paper to price options on the equity of individual 

firms rather than on the equity index, and again demonstrate the importance of leverage.  This occurs 

because GZ demonstrate that cross-sectional variations in debt/equity ratios are much greater for 

individual firms.  

                                                 
8 Pan (2002), page 32, states “To accommodate a richer term structure of volatility, one solution is to allow for multiple 
volatility factors with different rates of mean reversion.” 
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 Here we incorporate leverage in an index option pricing model which is parsimonious because it 

implicitly produces stochastic equity volatility and the observed inverse relation to equity returns 

without explicitly modeling stochastic volatility.  BCC’s explicit model of stochastic volatility requires 

four additional parameter estimates per volatility.  Thus, a simple term structure allowing four 

volatilities would require, for example, at least sixteen parameters in addition to the eight other 

parameters necessary for BCC’s best model, SVJ.  Such a model would be much more theoretically 

complex, perhaps even require additional correlations between the stochastic volatility processes in the 

term structure, and introduce more measurement error.  In addition, data limitations on liquid index 

options trading daily would prohibit the use of contemporaneous data to imply these volatility 

parameters.   

To isolate the effects of leverage on asset prices we use standardized comparisons of otherwise 

similar models with and without leverage.  First, we compare Geske’s (G,1979) generalization of BS to 

include firm financing choices.  We investigate how much different levels of leverage observed over 

time effect index option prices.  Since Black-Scholes is a special case of Geske and both models are 

implemented in the same way, their differences must be attributed to leverage.  Next, we compare both 

G and BS to BCC’s more complex, nested models, which also generalize Black-Scholes by assuming 

many additional process parameters necessary to model a more complex equity process which includes a 

stochastic volatility process, a jump process, and a stochastic interest rate process.  These joint 

comparisons reveal that leverage is very important to pricing equity index options.   

In the following pages, Section 2 describes alternative models considered with emphasis on the 

three tested herein, Geske (G), Black-Scholes (BS), and Bakshi, Cao,and Chen (BCC).  Section 3 

describes the data and discusses how these three models are implemented and compared, Section 4 

describes the results, and Section 5 concludes the paper.  
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2.  Discussion of Alternative Models  

 

Although the majority of public corporations in the S&P 500 use both debt and equity financing, 

most equity option pricing models do not consider the influence of a firm’s choice of capital structure on 

option prices.  However, in a recent paper, Eom, Helwege, and Huang (EHH, 2004) examine five 

structural models that do consider firm’s financing choices for asset pricing when the assets are 

corporate bonds modeled as options.  The five models they examine are those of Merton (1973), Geske 

(1977), Longstaff-Schwartz (1984), Leland-Toft (1996), and Colin-Dufresne-Goldstein (1997).  For the 

sake of brevity when referring to these papers, we adopt their convention and refer to author names by 

their initials M, G, LS, LT, and CDG, and we also use the initials. 9  Of these five structurasl bond 

models only those of G (1977) and LT (1996) have been extended by G (1979) and TP (1997) to directly 

analyze the effects of the firm’s choice of leverage on equity options, and only G for index options. 10

If, as we show in this paper, the time series variations in the implied market value of aggregate 

leverage cause significant effects on the prices of equity index options, then leverage should also exhibit 

significant cross-sectional effects on the prices of options on the individual firms which comprise the 

index.  This result should be expected even before the empirical demonstration because the cross section 

of individual firms which comprise the index will contain greater leverage extremes than the index 

which is an average of these firms.  As previously mentioned there have been papers which examine 

differential cross-sectional effects of firm leverage on individual stock options.  However, to the best of 

our knowledge there has been no published demonstration of empirical pricing improvements resulting 

from tests comparing models with and without leverage for pricing equity index options.  Furthermore, 

we are unaware of any paper which presents a methodology that uses only contemporaneous, liquid 

 

                                                 
9 See Eom, Helwege, Huang (2004), for notation,  page 500, and pricing, Table 3, page 512.  As expected they show these 
models are much more accurate on price estimates than on estimates of yield or spread estimates. 
10 The “choice” of leverage may be thought as a joint decision made by firm management and by the market.  As the market 
revalues a (or all) firm’s cash flows daily, then firms may find they have more or less leverage than originally chosen.  This  
happens to most firms in a severe market crisis.   
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stock and option prices to measure both the implied value of the market portfolio and the corporate debt 

component, and then uses this measure to examine the daily effects of the implied leverage changes on 

index option prices.   

The previously mentioned version of the Leland (JF, 1994) optimal capital structure model 

which TP adapt to value individual equity options is not really appropriate for pricing index options.  

The reason this approach is inappropriate is the distinctions which Leland showed are important for 

individual firms are not important for an index whose characteristics are an average of individual firm 

attributes.  For example, Leland’s differences in individual firm total debt, firm volatility, firm tax rates, 

firm bankruptcy costs, and firm coupon and other payouts, are not important because they are averaged 

and disappear in an aggregate index.  Furthermore, the distinction between short term, exogenous, 

protective covenant bankruptcy, and longer term debt, endogenous, stockholder decided bankruptcy is 

also less important for an index.  For an index like the S&P 500, the notion of endogenous bankruptcy 

decided collectively by the stake-holders in the 500 firms in the S&P is probably not too pertinent.  

Also, the potential for both short term insolvency effecting some firms and long term insolvency 

effecting other firms is mitigated by the averaging process of an index.  In addition, Geske and 

Delianedis (1995) show that incorporating options for both short term and long term insolvency 

generally increases the joint default probability and thus will make the leverage effect on option prices 

even stronger.  This can be understood by an American option analogy where adding the opportunity to 

exercise twice generally increases the option value. 

If we consider the S&P 500 index as “the market” and observe that this market portfolio exhibits 

systemic credit risk which may be characterized by events that impact market solvency, and these events 

include market liquidity, and market volatility, each accompanied and perhaps somewhat caused by 

changes in market leverage. 11

                                                 
11 Leverage here is defined as the debt-equity ratio (D/E).  Leverage is the important variable because it is measured relative 
to the equity cushion and thus is a better measure of solvency than the absolute level of debt since what is “too much” debt 
obviously requires consideration of the equity support. 

  The credit risk associated with changes in the market value of aggregate 
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leverage is relevant to index option pricing because an efficient option market attempts to anticipate 

potential important systemic changes in market solvency, liquidity, and volatility which accompany 

changes in aggregate market leverage.  The leverage effects can be severe regardless of whether the 

source arises collectively from internal firm decisions, from external revaluation of firm cash flows, or 

from external changes in the risky discount factor.  The next few paragraphs describe our approach to 

provide evidence for this idea. 12

Our stylistic solvency condition is leverage dependent and based on the relation between the 

promised payments, F, which is a book value, and the ability to pay, V=E+D, which is an implied 

market value.  F is the face value of total aggregate promised payments outstanding, and V, the total 

implied market value of the ability to pay, equals the sum of the observed market value of the equity 

cushion, E, and the implied market value of the promised debt payment, D.  Thus V derives it’s 

“implied” characteristic from the debt, D, not from the observed equity, E.  Insolvency occurs when V < 

F.  This condition follows Merton (1974) and as mentioned is obviously heuristic since absolute priority 

does not occur in credit relations.  Instead of absolute priority, there are negotiations between the 

stakeholders, which include all debt and equity holders, and in the case of a systemic market credit 

event, even the government is a stakeholder.

   

13

Since the model assumptions underlying BS and BCC, and their resulting equations which omit 

leverage, are perhaps better known than G’s (1979) option model which includes leverage, we begin the 

discussion of these three models with a review of G’s model.  G’s model applied to listed equity index 

options characterizes the state variable as the total market value, V, of the 500 firms comprising the 

index (V = market debt D + market equity E), whereas BS and BCC choose the state variable to be the 

 

                                                 
12 Systemic risk is certainly present in aggregate financial markets, as demonstrated in the depression in 1930’s, the 1987 
global equity market crash, the 1997 Asian currency crisis, the 1998 LTCM crisis, and most recently the 2007/8 “Great 
Recession” credit crisis.  It is possible for a systemic market credit crisis to occur from too much leverage because the market 
anticipates the risk that the total market value of firms promised payments may be greater than their ability to pay. 
13 See Lau & Santos, IMF 2010, for a similar application of compound option theory to total country debt and country 
insolvency risk.  Responsible governments are corporate stakeholders, and the loss of expected corporate taxes may provide 
another reason for government “bailouts”.   
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aggregate equity market value, E.  Thus, G includes debt D which BS and BCC omit.  As both BS 

(1973) and Merton (1974) have concluded, adding financing choices to the option model which allows 

asset pricing to be approached at the more fundamental firm level should make equity option pricing 

more consistent with the theory of the firm.  It also will allow the examination of credit risk effects in 

option markets which are the markets thought to convey the most information (Black, 1976).  G’s model 

is consistent with the no arbitrage ideas of Modigliani and Miller (V=D+E).  The boundary condition for 

exercise of the index option is an identity which depends on the critical market value, V*, defined by 

known option exercise prices at each expiration date.  If we assume markets are perfect with respect to 

information, there are no transaction costs, there are no riskless arbitrage opportunities, an  index options 

are functions of aggregate total market value, V, and time, t, and describe V in equation (1) to be 

following the stochastic process,  

dV/V = μvdt + σvdZv             (1)  

where all index options expire at some Ti before the debt is to be repaid at TD, then we can derive G’s 

equations for pricing S&P 500 index put, P(V,t), and call, C(V,t), options:14

 

 

𝑃 = 𝐹𝑒−𝑟𝐹𝑡𝑑(𝑇𝐷−𝑡)𝑁2(−ℎ1 ,ℎ2;− 𝜌) − 𝑉𝑁2 �– (ℎ1 + 𝜎𝑣𝑇𝑖) ,ℎ2 + 𝜎𝑣𝑇𝑖;− 𝜌� + 𝐾𝑒−𝑟𝐹𝑡𝑖𝑁1(−ℎ1)        (2) 

 

𝐶 = 𝑉𝑁2 (ℎ1 + 𝜎𝑣𝑇𝑖 ,ℎ2 + 𝜎𝑣𝑇𝑖;  𝜌) − 𝐹𝑒−𝑟𝐹𝑡𝑑(𝑇𝐷−𝑡) 𝑁2 (ℎ1 ,ℎ2;  𝜌) −  𝐾 𝑒−𝑟𝐹𝑡𝑖(𝑇𝑖−𝑡)𝑁1(ℎ1)              (3)       
         

   

where                 tT
tTrVVh

ivTi

ivTiFTi

−
−−+

=
σ

σ ))(2/1(*)/ln( 2

1   

                                                 
14 See Geske (1979) for more detail.  Our exact implementation technique is described in more detail in Section 3.  Since V = 
E+D and E is known, solving for D is similar to solving for V when we use observed E and solve for E+D = V. N2 and N1 are 
bivariate and univariate cumulants of the normal distribution whose limits are h1 and h2 and in the bivariate case ρ is the 
correlation between the option payoff event and the debt payoff event.     
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                tT
tTrFVh

DvTD

DvTDFTD

−
−−+

=
σ

σ ))(2/1()/ln( 2

2  

and 

                          )/()( tTtT Di −−=ρ  

In terms of the number of unknowns, solving for numerically for V is similar to solving for D 

since V=E+D and E is known.15

  G’s two primary unknowns are V and σvTi (or E+D and σvTi ).  The third unknown, V*, is 

defined as the critical aggregate market value required for exercise, and is solved for simultaneously 

with V=E+D and σvTi.  V* is primarily based on the known option strike price, KJ, and thus known 

equity value EJ*, for all j strike prices, where EJ* must equal KJ, or EJ* = KJ .  Thus, V* is the critical 

total market value which determines whether each put or call option with strike price Kj = Ej* and time 

to option expiration Ti will be exercised.  At each option expiration Ti for each exercise price Kj , if V < 

V* then E<K, and P = K-E (C = 0), and if V > V*, E>K, and P = 0 (C = E-K).  The parameter F is the 

duration based face value of all 500 firm’s total debt outstanding, and TD is the duration date for the 

solvency check for this aggregate debt.

  However, since the volatility of V is an appropriate combination of the 

volatilities of E and D, and because equity, E is much more volatile than debt, D,  substituting the 

observed value for E will reduce the volatility and thus the expected range of numerical search for V = 

E+D.  This will improve the option pricing by reducing measurement error from implied parameters.  

Also, since market prices of both equity and options on the equity are used in the solution and are 

dependent on V, this will also insure the consistency between the observed stock and option market 

prices because the larger and more volatile component of V is known. 

16

                                                 
15 The substitution of Et+Dt for Vt and use of the known, observed Et is important because it is consistent to use the same Et 
(and thus Vt) for all options at any specific time t.   

  Since V* = E* + D*, and since E* is equal to known and 

constant KJ for all Ti, the only changes in V* at different Ti will arise from changes in D*.  Thus, in 

16 Note that Compustat balance sheet data is used to find the duration and amount of each firm’s outstanding promised debt 
payments, and then this is aggregated to find the duration and amount of the total debt of the 500 firms in the S&P. 
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most cases the variation in V* will be small and dependent on changes in the discounted value.  Lastly, 

for G’s model there are two correlated options, one at time Ti for the index put option exercise, and one 

at time TD for the market’s solvency.  Their correlation is measured by ρ  where the index option 

expiration Ti is less than or equal to the market’s debt duration TD.   

The Black-Scholes option pricing model does not consider the firm’s capital structure.  Instead 

BS assume a stochastic process for the equity, dE/E, which includes the assumptions of constant or 

deterministic equity volatility, and given interest rate assumptions, no arbitrage conditions, and the 

defined strike price boundary condition for put options, results in the following well known equation for 

valuing put options17

(4)  

: 

))(1())(1( 11
)(

111
11 dNKetTdNEP tTr

ETi
F −+−+−−= −−σ   

Where d1 and d2 are similar in form to h1 and h2, but here E is substituted for V, K is substituted for V*, 

and σETi is substituted for σVTi .     

 We also use the Merton (M, 1974) version of the BS model for stock as a call option on the firm 

assets V, which has the same state variable as equation (1), and is expressed by the following equation: 

 

(5)  )()( 21
)(

21 hNFetThNVS tTr
DvTD

DFTD −−−−+= σ  

where h2 is defined above. 

          

The notation for these three models, G, BS, and Merton can be summarized as follows: 

P/C      = current market value of an SPX index put/call option, 

E = equity index level net of dividends d, 

D = current market value of aggregate debt in the 500 firms in the S&P 

                                                 
17 In this paper we only present results for index put options as the title indicates, but the results also hold for index call 
options. 
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V = current total (debt D+ equity E) market value of 500 firms in the S&P 500, 
 
V*       = defined as the critical total market value where ETi ≥  K implies VTi ≥  VTi* 
 
F = face value of market debt (debt outstanding for S&P 500 firms), 
 
Kj         = strike price of the jth option, 

rFt = the risk-free rate of interest to date t, 

vTiσ  = the instantaneous volatility of the total market return for options expiring at Ti  
 

vTDσ  = the instantaneous volatility of the total market return for debt maturing  at TD  

ETiσ  = the instantaneous volatility of the equity index return for options expiring at Ti, 
 
t = current time, 

Ti  = expiration date of the ith option, 

TD = duration of the aggregate market debt, 
 
N 1 (.) = univariate cumulative normal distribution function, 

N2(…) = bivariate cumulative normal distribution function, 

ρ        = correlation between the two exercise opportunities at Ti and TD. 

d = dividends 

It is important to include BS in the model comparisons of G and BCC.  Since BS is a special case 

of G, which reduces to BS when there is no leverage (F=0), we will show that any differences between 

BS and G must be directly attributed to leverage.  Similarly, since BS is also a special case of BCC, and 

BCC’s models reduce to BS if the volatility and interest rates are constant and there are no jumps, then 

any differences between BS and BCC models must be attributed to these additional parameters.  This 

standardized method of comparison allows us to examine the relative improvements of G to BS and 

compare them to those of BCC to BS.  The above discussion completes our brief descriptions of G and 

BS.  Next we briefly describe more details about the BCC model.    

In order to compare G to more complex models which omit leverage but instead attempt to 

characterize the complexity equity  distribution with other explicit stochastic processes, we implement 
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the nested versions of the three BCC (1997) models, stochastic volatility, stochastic interest rates, and 

stochastic volatility with jumps  (SV, SVSI, SVJ).  We use identical implementation techniques as 

described in their paper, and we replicate BCC’s Table 3, to confirm our matching their methodology.  

BCC implement the following nested equation (6) where their notation letters and subscripts V, R, J, and 

λ refer to volatility diffusion component V, spot interest rates R, jumps size J, and jump intensity λ.  By 

sequentially making constant or setting to zero the relevant terms for i) R, λ, and J, or ii) λ and J, or iii) 

R, we are left with simpler equations for either i) stochastic volatility (SV), ii) stochastic volatility and 

stochastic interest rates (SVSI), or iii) stochastic volatility and jumps (SVJ), respectively. 
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Additionally, making all the terms involving the stochastic processes for volatility, interest rates, and 

jumps zero reduces equation (6) to the original BS stochastic differential equation.   

This concludes our brief description of the option models of G (equations (2) and (3)), BS 

(equation (4)), and BCC (equation (6)) 18

                                                 
18 See BCC (1997), p. 2010, for more specific details of equation 5. 

 to be compared and tested herein.  Before going to Section 3 

we re-emphasize a few points about the upcoming model comparisons.  First, the reader should now 

appreciate that the simpler but well known BS model compared herein is not a “straw man”.  Since the 

important difference between BS and G is the inclusion of debt, if the two models are implemented by 

exactly the same method, then any difference between the two model values is a direct measure of the 

leverage effect.  Similarly, since the important difference between BS and BCC is the inclusion of 

stochastic volatility, stochastic interest rates, and jumps, any difference between these two model values 
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(BS and BCC) is a direct measure of BCC’s additional parameter effects.    This methodology allows a 

standardized comparison of any relative improvements of the more complex models, G and BCC, to the 

simpler model of BS which omits these complexities.  In other words, how does the inclusion of 

leverage into BS compare to the inclusion of BCC’s additional stochastic processes for stochastic 

volatility, stochastic interest rates, and jumps.  Second, it would always be desirable to implement 

models in a way that i) is consistent with market data, and ii) does not give any model an unfair 

parametric advantage.  When possible we attempt to follow these implementation guidelines, although 

BCC’s complexity will always result in the advantage of more explanatory parameters.   

In the next Section 3 we describe the data necessary for the model implementation techniques 

used to test for both the presence of leverage effects in index put option prices, and to compare the errors 

of matched pairs of option model values relative to market prices for the BS, G, and BCC models. 

 

3.  Data Measurement and Model Implementation 
 
 
3a. Data Measurement 
 
 The data necessary to compare the three models discussed in Section 2 and to test for the 

additional effects of leverage on S&P 500 index put options are index option price data, individual 

equity price data, dividend data, interest rate data, and balance sheet information.  We also require the 

composition of the S&P 500 firms on a daily basis.  We collect daily closing stock prices, daily shares 

outstanding, and the daily composition of the S&P 500 index from CRSP.  The interest rate data are 

daily from the Federal Reserve for government securities with maturities ranging from 1 month to 10 

years, which we adjust to use discount factors for the market debt, option strike prices, and dividends.19

 The index option prices we use are daily put closing prices from Option Metrics from January 4, 

1996 through April 30, 2004.  This 100 month sample period covers 8 1/3 years and contains about 

   

                                                 
19 Option theory requires a risk-less interest rate.  However, the over-night call money rate which is used for option market 
maker margin or the libor rate might also be used.  These option prices are not too sensitive to this choice of interest rates. 



 16 

200,000 index put and call options and 2080 observation days.  Option Metrics reports for all options a 

trade at the close, or the closing best bid and best ask as a spread, which we average for the closing 

option price.  However, for at-the-money index options (ATM) there is almost always a trade at the 

close.  The nearest to at-the-money (ATM → E=K or K e-rt ) S&P 500 index options have the highest 

daily volume of all traded equity options, trade continuously throughout the day, and thus they should 

not exhibit much non-synchronicity. 20

TrTeKEP −+−≤

   However, in order to further minimize non-synchronous 

problems, first we check to see if there was an option trade on that day.  Next we check to see if 

arbitrage bounds are violated (c.f. ) and if so eliminate these option prices.  If non-

synchronicity occurred because the stock price moved up after the less liquid in or out-of-the-money put 

option last traded, then option over-pricing would be observed.  If non-synchronicity occurred because 

the stock price moved down after the less liquid in or out-of-the-money option last traded, then option 

under-pricing would be observed, and these options would be removed by the above arbitrage check.  

We also collect the option volume and open interest data and dividend data for the S&P 500 from 

Option Metrics.  Because we cannot perfectly eliminate non-synchronous pricing for the in and out-of-

the-money options with this data base, we keep track of the amount of under and over-pricing in order to 

relate this mis-pricing to the resultant over (under) pricing of in (out-of)-the-money index put options for 

all models tested. 

 The balance sheet information for each firm we collect from S&P’s annual and quarterly 

Compustat.  Compustat categorizes their data on book value of debt as due in years 1 through 5 (Data 

44, 91,92,93,94), and greater than 5 years (Data 9 minus items (91-94)), which we place at 7 years.    To 

these categories we add current liabilities (Data 5), deferred charges (Data 152), accrued expenses (Data 

153), short term notes payable, deferred federal, foreign, and state taxes (Data 206,269,270,271), all 

                                                 
20 Approximately 200,000 contracts traded per day in 2004 on the SPX and Option Metrics takes the best bid and ask from 
the exchange (CBOE, Phlx, Amex, Ise) whose trade is closest to the closing stock price.  Non-synchronicity or no trade may 
occur for away from the money options, but for at-the-money S&P 500 index options this trade will almost always be 
synchronous.  Using the mid-point of the bid/ask avoids bid/ask bounce problems. 
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payable in year 1.  All long-term debt tied to prime (Data 148) and debentures (Data 82), we also place 

in year 7, respectively.21

 Next we calculate the daily equity market value (cap) of the S&P 500 using the sum of the 

product of each individual firm’s share price times shares outstanding for 500 firms, and we find the 

factor f which is used to normalize the index.  We confirm that we match the reported index level each 

day during our sample.  We use this same normalization factor for the daily S&P 500 debt outstanding.  

This procedure produces daily the exact market value of the aggregate equity and the face value and 

duration of the aggregate debt outstanding for the 500 S&P corporations. 

  The debt due on each day in each quarter of each year for the S&P 500 firms is 

the sum of the debt due for all 500 firms for that day in that quarter of that year.   This structure of the 

S&P 500 debt outstanding for each firm permits the computation of the daily duration of the book value 

of aggregate market debt outstanding and the daily amount due at the duration date.   

 

3b. Model Implementation 

Now we have all the data defined on page 12, as P, C, E, F, Kj, rFTi, t, Ti, TD, ρ ,  and d, including 

the extra leverage data necessary for G, and are prepared to implement the models G, BS, and BCC 

discussed in Section 2.  As previously mentioned at the end of the Section 2, we would like to 

implement the models in a way that is i) consistent with the market data, and ii) does not give any model 

an unfair parametric advantage.  These two implementation goals are related.   

First, if the model is intended to value options of different maturities and the implementation is 

to be consistent with the market data, then the option data, literature, and market practice is 

unambiguous on the importance of a term structure of volatility.22

                                                 
21 Placing long term debt at 7 years follows from Guedes and Opler (JF, v51, 5, 1996), p. 1818, who provide evidence that the 
mean  duration of 7,362 bond issues of long term US corporate debt is 7 years during the 12 year time period 1982-1993.   

  Pan (2002) suggests that “to 

accommodate a richer term structure of volatility, one solution is to allow for multiple volatility factors”, 

22 A term structure of model implied volatility is consistent with the market finding the relevant risk is not the same for 
options with different expirations.  While this idea is intuitive and reasonable, the notion that at risk exposure is different for 
options on the same underlying and same expiration but different strikes is not either intuitive or reasonable.  
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which she (and many others, Duffie, et al(2000)) have argued is necessary “if one is trying to price both 

short and long dated options”. 23

 

    

Second, without a term structure of volatility, BS must fit all available options on any specific 

day for each strike price KJ and time to expiration Ti, with only one unknown parameter estimate, the 

ATM equity implied volatility, σE.  Similarly, G must fit all the available option prices with two 

extrinsic unknown parameter estimates, V(=E+D) and σv and one intrinsic transformational parameter, 

V* . 24

Here the implementation methodology allows the inclusion of a term structure of volatility to 

accommodate the BS and G models to be consistent with the market data and market practice, but 

because of data limitations and the large number of required parameters, no volatility term structure can 

be used for BCC.  This methodology actually allows the three models to be implemented in a similar 

  However, the more complex BCC models has the luxury to fit these option prices with either 9 

parameter estimates for BCC’s best model, SVJ, 8 parameters for SVSI, and 5 parameters for SV.  It 

would be a surprise if a model with far fewer parameters (BS or G) could compete with a model with 

many more parameters (SVJ).  If it were theoretically possible and empirically consistent and practical 

to implement BCC with a volatility term structure this would be even more unfair to BS and G because 

it would give the BCC models an even greater parametric advantage.  The BS and G models can easily 

accommodate a term structure of volatility.  Many academics have published articles demonstrating its 

relevance and importance, and the market practice is almost unanimous in using a volatility term 

structure.   However despite the theoretical problems of incorporating a term structure of volatility in 

BCC models,  contemporaneous price data limitations would make it impossible to estimate the required 

parameters, which would exceed the number of available traded options.   

                                                 
23 The numbers of articles are numerous and growing which show that both option price and volatility data suggest the 
importance of a term structure of volatility.  See Pan (2002), p. 32, especially footnote 29, for more references and details 
regarding the necessity of a term structure of volatility when pricing both short and long dated options.  The volatility term 
structure, like other term structures (c.f. interest rates, default probabilities, etc.), contains important information. 
24We solve for V or D using the same known E + D =V for all options.  V* transforms the debt boundary condition from 
dependence on E to dependence on V, and is determined by its relation to the known strike prices KJ.  
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fashion using contemporaneous rather than a larger set of historical data, also consistent with market 

practice, and renders the models to be more similar in the number of parameters. 

Thus, on each day we estimate only four volatilities to accomodate the term structure of 

volatility, using the ATM options with expiration closest to 15 days, 45 days, 110 days, and the index 

debt maturity date which is always greater than 365 days.  Since index options expire monthly on the 

third Friday of each month, this generally means the term structure of volatility will be constructed from 

options that have one month, four months, and six months to expiration, and the insolvency option at the 

debt maturity will have a consistent maturity.  In the matched pair comparisons of the three models each 

valuing the same matched options, we analyze the pricing errors by grouping all the options into the 

following five time buckets of days to expiration of 6 – 20, 21 – 72, 73 – 120, 121 – 364, and > 364 

days. 25

Now the importance of including BS in these model comparisons becomes more evident, 

because this allows us to conclude that it is leverage and not the term structure of volatility that is 

important for the model differences.  We will see this clearly in Section 4 when we examine the value 

errors relative to the market prices for matched pairs of options for these three models together on the 

same graphs and in tables.  Any observed differences between BS and G cannot be attributed to a term 

structure of volatility since both BS and G models have the exact same implementation, both using the 

same term structure buckets for volatility.  Thus, the observed differences between BS and G must be 

attributed to leverage, because if there is no leverage the two models would be identical.  In the same 

graphs, the comparison of BCC and BS shows that BCC is closer on average to the market prices, even 

   We use the four volatilities estimated for this term structure for all the options in each relevant 

group.  The volatility term structure becomes flat as the option expiration dates are extended so we value 

the long dated options in the last two time buckets with the same volatility used for the insolvency 

option.  

                                                 
25 The grouping follows Rubinstein (1985). This implementation with a term structure of volatility for BS and G still gives 
BCC implemented without a volatility term structure a large parametric advantage 
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though BS is using a volatility term structure which BCC did not allow in their implementation of BS. 

So when leverage is added to the BS model already using a volatility term structure, and then BS 

becomes the G model, we now observe that BS with leverage (i.e. G) is on average much closer to the 

market prices than BCC.  Thus, it cannot be the term structure of volatility that causes the BS model to 

improve when leverage is added.  Instead this improvement must be due to the addition of leverage. 

We should also mention that using options prices that are closest to at-the-money (ATM) to 

imply the volatilities is not a reason for G’s relative improvements compared to BCC.  Furthermore, 

using contemporaneous option prices instead of prices lagged a day is not the reason for G’s 

improvement.  In the Appendix 1, Tables 7d* and 8d* show that implementing G using the volatility that 

minimizes the sum of squared pricing errors using all the options with different strikes in the same time 

to expiration bucket instead of the ATM volatility does not change the results.  Furthermore, doing this 

on a lagged day instead of contemporaneously does not alter our conclusions.   

We now proceed to explain how we compute the parameters V = known E + D, σvTi , σvTD , and 

V* using only known contemporaneous equity and option prices and measured leverage parameters F 

and TD.  First note that V, D, and E must be the same at any point in time, t, for all option expirations 

and strikes, and σ vTi and σ vTD will be the same for all options expiring in the Ti, expiration bucket, and 

for the options buckets and debt using the long term volatility,  but σ vTi  will differ across the expiration 

buckets as explained.  We solve the first option expiration bucket and the debt insolvency bucket 

together.   From the first expiration bucket we use two pairs of put and call option market prices, and the 

stock price.  From the debt insolvency bucket we use equation (5) and the known equity price.  We 

simultaneously solve equations (2), (3), and (5) given market prices for P, C, and E, for parameters V = 

E+D, σvTi , σvTD ,  and the transformed option exercise strikes, V*.  Thus, on any specific day for the 

first time to option expiration bucket, Ti , we select two pairs or four options, two puts and two calls.  All 

four options have the same actual Ti but each pair has a different strike, Kj , and to minimize non-

synchronicity we choose two strike prices, Kj=1,2 , that are nearest to ATM.  So our four selected options 
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have the same actual time to expiration, Ti , but one pair of put-call options have strike price K1 , and the 

other pair has strike price K2 .  We also use equation (5) to solve for the long term volatility relevant for 

the debt insolvency condition.  We then solve simultaneously these five equations for five unknowns, i) 

V or D with the substitution (D + E=V), ii)  σvTi ,  iii)  σvTD , iv)  V1*(K1), and v) V2*(K2).  To 

summarize using our notation, we have market prices for the index equity level, E, and option prices for 

four options, two puts and two calls, and all four options have the same actual expiration date Ti , but 

each put-call pair has a different strike Kj chosen to be near to ATM.  This is notated as: 

Pair #1, strike K1: P1[V=D+E, V1*(K1),  σvTi=1, σvTi ] and C1 [ V=D+E, V1*(K1), σvTi=1, σvTD]      (6) 

Pair #2, strike K2: P1[V=D+E, V2*(K2), σvTi=1, σvTD ] and C2 [ V=D+E, V2*(K2), σvTi, σvTD ]      (7) 

Equity as option: E [ V, σvTD ]              (8) 

At time t, every option in the first expiration bucket is priced with the same total aggregate 

market values, D from V, using known E, and thus same V=D+E, for all Ti and KJ , and in the first 

expiration bucket Ti the same volatility, σvTi=1, and the same long term debt volatility σvTD .  Each option 

in the group of options expiring in bucket Ti with different strike price Kj  has a V*(KJ) corresponding to 

its strike price Kj .  These critical exercise values, VJ* for each KJ , are known from solving the above 

five equations represented in expressions (6), (7), and (8).  Since V* = E* + D*, we know that options 

with different strike prices in the same expiration bucket have a different EJ*’s = KJ ‘s, but have the 

same D*, while options with the same strike price but in different expiration buckets have the same E* 

but different DTi*’s.  Thus for options in the same expiration bucket with different strike prices, ΔV* is 

V2* - V1* = (E*2 + D*) – (E*1- D*) and thus the known difference in strike prices, K2 – K1, is simply 

equal to the differences in the E*’s, or ΔE*.  Because we are given the changes in the strike price for all 

options at any specific expiration date we can use these known strike price changes ΔK to produce the 

V*(Kj) for each Kj for all option the other options in the first expiration bucket.  Then, since we solved 

for the 5 unknowns D, E, and V, σvTi , σvTD and VJ*,  with the 5 equations for these two option pairs and 

the equity as an option,  and from this solution we know all the intrinsic V*(KJ )’s for the options with 
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different strikes in the first expiration bucket, we can use equations (2) and (3) and the now known 

parameters to predict the option prices for the rest of the put or call options in the first expiration bucket.   

As we move to the second expiration bucket, recall that at any fixed current time t, the values 

which are remain the same across expiration buckets are implied market values for Vt , Dt , the implied 

long term volatility σvTD , and the known equity value E.  The parameter values which change across 

expiration buckets are V*(KJ) and σvTi .  However, the change in V*(KJ ) for options with the same 

strike price is because of changes in DJ* since for the same strike KJ , EJ* does not change since KJ must 

equal EJ*.  Thus, at the second expiration bucket there are only 2 unknowns, σvTi , and DJ* which 

changes V*(KJ) for each option pair.  Now we only need to use the two put call option pairs since 

equation (5) for the equity as a call option on the aggregate market portfolio has the same now known 

parameters required to produce the known equity index price.  Once we solve the four equations for 

options in the same second expiration bucket, we can use the same procedure described above to predict 

the values of all the other in and out of the money option in that expiration bucket.   

This procedure can be repeated for multiple expiration buckets.  However, in order to keep the 

number of parameters required for accurate option pricing low and not advantageous over other models, 

we limit the number of options in the term structure of volatility. 

In summary, after solving for the required parameters from the equations for the two put call at 

the money (ATM) option pairs and the equity as an option, we can use these parameters to create the 

VJ*’s for all the in the money (ITM) and out of the money (OTM) options in each expiration bucket, and 

then predict the values of all the other ITM and OTM options in expiration bucket. 26

                                                 
26 ITM and OTM are abbreviations for in-the-money and out-of-the-money just as ATM abbreviates at-the-money. 

 This implied 

methodology for finding Dt, and thus Vt, σv, and V* is similar to the BS method for implied equity 

volatility, σETi.  It is important to realize that at each time t, the volatility term structure is estimated with 

the same known aggregate market equity value, E, the same implied aggregate market debt value, D, and 
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the same aggregate market portfolio value, V.  Thus, this term structure of volatility is consistent with 

the contemporaneous known market price of the equity index E, and the observed ATM index option 

prices  at each specific point in time, t. 

Next in Section 4 we present the results of comparisons of G to BS and BCC.  Section 4 

demonstrates that leverage causes G to be significantly closer than BS to market prices for 99% of 

109,301 matched pair comparisons of OTM options, and to 90% of 50,452 matched pair comparisons of 

ITM options.  Section 4 also shows that G’s values are significantly closer to the market prices than 

BCC’s best model, SVJ, for 75% of 139,016 OTM option matched pair comparisons, and to 65% of 

59,569 ITM option matched pair comparisons.  Thus, BCC’s pricing performance is better than BS 

without leverage, but not as good BS with leverage, which is G.27

 

   

4.  The Results 

This section presents the first evidence about the size and variation of the market value of 

aggregate leverage in the S&P 500 firms derived directly from option theory, and details about the 

model matched pair comparison results for BCC, BS, and G.  In addition numerous graphs and detailed 

tables of each model’s pricing errors are presented and discussed.  The results illustrate both the 

statistical and economic significance of the BCC, BS, and G pricing errors, the relation of these errors to 

the omission of leverage, and relative improvements of leverage with respect to matched pairs of options 

categorized by time to expiration, leverage, moneyness, and calendar year.   

The results demonstrate that changes in the market value of aggregate corporate leverage implied 

from the most traded ATM index option prices exhibit the anticipated leverage effect on both the 

underlying equity index and consequently on the price of options on this index.  The size of the leverage 

effect should be less significant when the market value of aggregate leverage is small (less than 1 [D/E < 

                                                 
27 The number of matched pair comparisons are different between G and BS and G and BCC because G and BS are produce 
equal values on many more of the comparisons than G and BCC’s best SVJ model, and we are mainly interested in when the 
models are different. 
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1)], and more significant when aggregate market leverage is large [greater than 1 (D/E > 1)].  However, 

the tables show that even relatively low leverage ratios have can significant effects on option values. 

Section 3 explained our methodology to measure the magnitude of the implied market value of 

aggregate leverage in the S&P index.  Here, we graphically illustrate the variability in the economy’s 

aggregate leverage during our sample period.  Then we test whether including a measure of aggregate 

leverage as an explanatory variable can substantially improve the pricing of equity index options.  

Similar to earlier option based research findings, we demonstrate highly statistically significant pricing 

improvements when compared to both simple and more complex models which omit leverage.  

 

4a.  Market Leverage 

First, using equations (2) and (3) we compute daily the market value of the aggregate debt to 

equity ratio, D/E, for the 500 firms in the S&P, where, as previously explained, the market value of 

aggregate debt is derived from the option pricing structure using daily market prices for the equity index 

and market prices of ATM options on the index.  We believe that Figure 1 is the first presentation of 

implied market value of aggregate debt depicted as a time series of market value of the aggregate D/E 

ratio for the S&P 500, and we plot D/E along with the level of the S&P 500 equity index.     

As expected, the market value of the aggregate debt/equity ratio and the S&P 500 equity index 

level, are inversely related.28

                                                 
28 In order to keep the graph uncluttered we do not graph the equity index volatility.  However, leverage produces an equity 
index volatility that is stochastic and inversely related to the equity level and returns.  Ito’s lemma provides a well known 
formula showing how leverage makes the equity volatility stochastic and bounded above (greater than) the firm volatility.  
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Figure 1 shows that during our sample period January, 1996 to April, 2004, the market value of 

the aggregate debt/equity ratio for all firms in the S&P 500 has considerable variation, ranging from a 

minimum of about 0.40 in January 2000, to a maximum of 1.15 in April 2003.  This range for the market 

leverage ratio means that the amount of debt, D, in the corporate economy over this 100 month period, 

as a percent of the total value of the 500 corporations, is implied to range between 29% and 55%, which 

is exactly the range of average debt to firm values that Leland (and many others) reported in his optimal 

capital structure research papers. 

Figure 1 also shows the S&P 500 leverage is highest in years 2002 and 2003, and lowest in years 

1999 and 2000.  Later in this section we demonstrate that the models compared herein which omit 

leverage, BCC and BS, exhibit greater leverage related valuation errors in 2002 and 2003 when the 

market value of leverage is larger, and less leverage related valuation errors in 1999 and 2000 when the 

market value of leverage is smaller.  We will refer back to Figure 1 throughout the discussion of results 

to recall in what years the market leverage was highest or lowest while the market index level was 

lowest or highest. 

60
0

80
0

10
00

12
00

14
00

16
00

In
de

x 
Le

ve
l D

ai
ly

.4
.5

.6
.7

.8
.9

1
1.

1
1.

2
D

/E
 D

ai
ly

04jan1996 02jan1998 03jan2000 02jan2002 02jan2004
Date...

D/E Daily Index Level Daily

Fig 1. S&P 500 D/E & Index Level Daily Graph



 26 

Finally, for those not so familiar with the use of the S&P as the market portfolio in asset pricing 

literature, note that the S&P 500 Stock Index represents about 80% of the market capitalization of all 

stocks listed on the New York Stock Exchange, and it is often treated as “the market” in the literature on 

tests of asset pricing models. 

 

 4b.  Model Pricing Error Comparison for BS and G 

First we present separately a “representation” of BS model values relative to the market prices 

because this characterizes how the literature and later models (BCC, G, et al) evolved to attempt to 

mitigate the well known BS problems.  Figure 2 presents a graph of put option market prices, BS model 

values, and moneyness, K/S, which is representative of most research findings for the S&P 500 index 

put options. 

 

                                 

 

Since the equity index level, S in Figure 2, is the same for all K at any point in time during or at 

the end of any day, as strike prices, K vary, the out-of-the-money (OTM) stock index puts (low K) are 

 O
pt

io
n 

Pr
ic

es
 

1   K/S 

Fig 2. Put Option Prices  

BS Market 

  



 27 

shown to be under-valued by BS and the in-the-money (ITM) index puts (high K) are shown to be over-

valued by the BS model relative to the market prices. 

 This BS pricing bias for S&P 500 index put options is probably the most widely known 

empirical bias in the option pricing literature.  However, we will see that when we compare BS to G or 

BCC for matched pairs of options, there are many different possible outcomes.  29

We show in Figure 3 that G’s option model has the potential to improve or even eliminate these 

BS valuation errors because of the leverage effect.  The reason for this, once again, is the economic 

effects of leverage create the necessary negative correlation between the index level and the index 

volatility.  This interaction between the index level and index volatility implies that the index volatility 

is both stochastic and inversely related to the level of the index, and that the resultant implied index 

return distribution will have a fatter left tail and a thinner right tail than the BS assumption of a normal 

distribution. Thus, G’s option model produces option values that are less (greater) than the BS values for 

in- (out-of) the-money European index put options.  Thus, leverage could potentially completely 

eliminate this well known BS bias.  

 

 

                                                 
29 Figure 2 represents the most ubiquitous outcome from our data. However, for a very small number of index option matched 
pairs there are many different model distance comparisons that can be made: both over, both under, one over while the other 
is under, one equal to the market while the other is either over or under, both equal to each other but either over or under, 
both equal to each other and equal to the market, and furthermore, there are multiple cases for each situation when the models 
are not equal to each other.  This is discussed in more detail later in this section.  
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 Figure 4 presents how we measure the amount of improvement leverage provides relative to the 

alternative model (here BS) without leverage for valuing S&P 500 stock index put options during this 

sample period.  During the 2080 day sample period, we examine thousands of matched pairs of all 

options for each expiration date and each strike price, and we measure the distance between each 

model’s value and the market price.  We compare the distance that each model value is from the market 

price for each matched pair, find the model that produces the closest distance to the market, and we 

compute the improvement of one model to the other for that pair.  We then net these distances for all 

matched pairs in order to find which model is closest to the market for all matched pairs on average and 

how much net improvement, if any, is present.  We present this analysis for all matched pairs of options 

for a variety of categories with different times to expiration, different moneyness, and for the different 

market leverage exhibited during our sample period. 
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The potential improvement represented in Figure 4 with respect to the market price30 of Geske’s 

compound option model compared to the Black-Scholes model is calculated with the following 

formula:31

 

 

BS error   –    G error    =      (Market - BS)  -  (Market - G)                                                    (6) 
           BS error                                (Market - BS)  

 
 
 

The tables that follow demonstrate the importance of leverage by presenting both the statistical 

significance and the economic significance of G’s index option pricing improvements relative to the 

alternative model, here BS first and then BCC. 

 

                                                 
30 If Figure 4’s representation turns out to be the most common result from the addition of leverage, then this indicates that 
there is not enough skewness and excess kurtosis from only leverage, so perhaps adding jumps at the firm level could provide 
the necessary additional improvement. 
31 Care must obviously be taken with the signs of the variety of matched pair errors explained in footnote 40, especially if one 
model value distance is above and the other distance is below the market price, when computing the average error across all 
matched pairs.  However, the results depicted in Figures 2, 3, and 4 are found for the vast majority of all option pairs. 
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4c.1  Tables of BS vs. G by Moneyness, Year, Expiration, and Leverage  

Here the focus is on actual rather than representative comparisons of BS to G.  Tables 1-4 

present a detailed analysis of 57,177 ITM puts and 132,388 OTM put option pricing errors of BS, and 

G’s relative improvements, for different times to expiration by calendar year and by market leverage, 

using two definitions of ATM.  We also present the number of matched pairs of options available in 

each of these categories during this time period, and we examine both the statistical and economic 

significance of G’s improvements relative to BS. 

When the ATM option region is considered to contain strike prices within ±5% of the index 

level, a large number of options are eliminated.  If instead we consider only two options with different 

strikes per day per time to expiration as the most at-the-money options, defined as MATM, then all but 

two previously eliminated 5% ATM’s will now be either in or out-of-the-money and priced with some 

error.  This alternate definition of ATM options (labeled “0%”) increases the sample size of mis-priced 

options. 32

Table 1 presents details for ITM index put options.  Panel A illustrates that if we consider only 

two options to be ATM each day (the MATM), the sample of in-the-money put index options more than 

doubles from 23,438 to 57,177 matched pairs.  Panel A also shows the most active trading years for ITM 

put index options during our sample period are 2000, 2001, and 2002, and contain 11,349 of the 23,438 

(or 22,381 of the 57,177) total ITM option matched pairs.  As expected, Figure 1 comparing market 

leverage to the market level shows that during these years 2000-2002 the market level was the mostly 

decreasing while market leverage was increasing.  This decreasing market resulted in these years having 

the largest number of ITM index put options.  Also as expected, Table 1 shows that the nearer expiration 

ITM puts are traded more heavily than the longer expiration puts.    

 

                                                 
32 We might also expect this ATM definitional change to reduce the average net valuation error because the ATM options are 
considered to be more accurately priced.  However, if we use the volatility that minimizes the SSE across all options in each 
term bucket, then perhaps increasing the number of ATM options might increase the average errors. ATM options are the 
most liquid by measures of volume, open interest, and bid-ask spread, and their implied volatilities are generally the best 
estimates of future realized volatility.  Because of this ATM options are believed to contain the best price information and are 
considered to be the most accurately priced options.  
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TABLE 1

PANEL A

5 PERCENT 0 PERCENT

 Option Expiration (in Days)  Option Expiration (in Days)
YEAR  Min-20  21-72  73-120  121-364  365-Max  TOTAL YEAR  Min-20  21-72  73-120  121-364  365-Max  TOTAL
1996 69 329 178 585 388 1,549 1996 629 2,316 905 1,602 733 6,185
1997 143 709 306 1,055 403 2,616 1997 880 2,866 1,056 2,236 775 7,813
1998 269 786 383 1,055 473 2,966 1998 976 2,686 957 1,932 824 7,375
1999 150 757 354 897 275 2,433 1999 923 2,657 944 1,809 545 6,878
2000 259 1,040 386 1,093 377 3,155 2000 969 2,862 980 1,848 573 7,232
2001 321 1,183 507 1,221 428 3,660 2001 888 2,527 944 1,940 635 6,934
2002 449 1,631 531 1,474 449 4,534 2002 1,086 3,094 1,048 2,307 680 8,215
2003 247 1,055 352 721 0 2,375 2003 916 2,701 780 1,354 0 5,751
2004 31 109 10 0 0 150 2004 248 510 36 0 0 794

TOTAL 1,938 7,599 3,007 8,101 2,793 23,438 TOTAL 7,515 22,219 7,650 15,028 4,765 57,177

PANEL B

5 PERCENT 0 PERCENT

 Option Expiration (in Days)  Option Expiration (in Days)
D/E  Min-20  21-72  73-120  121-364  365-Max  TOTAL D/E  Min-20  21-72  73-120  121-364  365-Max  TOTAL

0.4-0.5 213 943 496 1,280 424 3,356 0.4-0.5 1,242 3,555 1,409 2,492 767 9,465
0.5-0.6 540 2,226 821 2,494 967 7,048 0.5-0.6 2,287 6,872 2,241 4,643 1,711 17,754
0.6-0.7 408 1,361 658 1,811 778 5,016 0.6-0.7 1,493 4,590 1,791 3,584 1,332 12,790
0.7-0.8 189 751 248 748 370 2,306 0.7-0.8 859 2,436 683 1,457 583 6,018
0.8-0.9 109 384 174 266 69 1,002 0.8-0.9 466 1,267 412 438 90 2,673
0.9-1.0 290 1,150 329 799 152 2,720 0.9-1.0 717 2,163 650 1,370 236 5,136
1.0-1.2 189 784 281 703 33 1,990 1.0-1.2 451 1,336 464 1,044 46 3,341
TOTAL 1,938 7,599 3,007 8,101 2,793 23,438 TOTAL 7,515 22,219 7,650 15,028 4,765 57,177

PUT ITM

TOTAL NUMBER OF OPTIONS

 

 

Table 1, Panel B, presents these same ITM index put options by time to expiration and also 

categorized by their leverage (D/E) ratio.  Recall the market D/E ratio during this time period ranges 

between 40% and 120%, which is depicted in Figure 1.  For the 5% ATM sample, Panel B shows that 

about 25% (5,712/23,438) of ITM put index option matched pairs traded when the market leverage was 

in its highest range from 80% to 120%.   

 

Table 2 presents the net pricing error improvement of G relative to BS by calendar year and by 

leverage ratio for the various times to expiration and for the two definitions of ATM for all ITM put 

index option matched pairs during this sample period.  Panel A shows that the improvement of G’s 
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model relative to BS with respect to time to expiration varies on average across all years from 12% for 

the shortest expiration index options (6-20 days) to 45% for longest expirations for the 5% ATM 

options, and is strictly monotonic across all ranges of expiration. 33

 

  G’s improvement is greater for the 

options with longer times to expiration because the leverage has a longer, more correlated effect on their 

value. 

Also note that G’s improvement over BS is greatest in the complete years 2002 and 2003 (and 

the partial year 2004) averaging between 70% and 90% across all times to expiration.  This is as 

expected because Figure 1 (and Table 2, Panel A) shows that market leverage was increasing and 

highest in 2002 and 2003 (and the part of 2004), with D/E ranging (averaging) between 0.8 and 1.2.  

Similarly, G’s improvement is smallest but still greater than 20% in the low leverage years of 1999 and 

2000, when the D/E ratio ranges (averages) between 0.4 and 0.5.  Table 2 also illustrates that when 

ATM is defined as the two most at the money options, the previously excluded but now included ITM 

options which have smaller pricing errors reduce the net improvement in all years and across all times to 

expiration except the nearest to expiration, and reduce the total average improvement from 42% to 38%. 

Table 2, Panel B, categorizes options by leverage instead of by year.  Here it is shown that 

relative to BS the improvement of G’s model increases with the D/E ratio monotonically for every time 

to expiration bucket, especially when the sample number of options in each category is sufficiently 

large.  This improvement is also monotonic with leverage on average across all times to expiration, and 

ranges from a low of 24% for the lowest D/E range of 0.4-0.5, to a high of 88% improvement for the 

highest D/E range of 1.0-1.2.  Also ass expected, for the highest leverage categories of 0.9 to 1.2, G’s 

improvement is greatest and averages between 76% and 96% for both 5% and 0% ATM options.   

 

                                                 
33 Note that in a few instances the pricing error correction is greater than 100%.  This can happen when the two models errors 
are on opposite sides of the market price. 
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Table 3 presents similar data to Table 1 for out-of-the-money (OTM) index put option matched 

pairs.  First consider the number of traded index puts presented in Table 3 for OTM options.   In Panel A 

when ATM is defined as 5% the near expiration index puts are traded much more heavily than the far 

expiration puts every year.  Here the shorter expiration options comprise about 52% (47,605/91,950) of 

these matched pairs.   

 

Panel A also illustrates that when we consider only two options to be ATM each day (the most at 

the money options), the sample of OTM put index option increases from 91,950 to 132,388 matched 

pairs.  The most active trading years for OTM put index options during our sample period are 1997, 

1998, and 1999, and Figure 1 shows this is the time period when the S&P 500 index level was the 

mostly increasing, resulting in more OTM options. 

TABLE 2

PRICING ERROR IMPROVEMENT 
PANEL A

5 PERCENT 0 PERCENT

 Option Expiration (in Days)  Option Expiration (in Days)
YEAR D/E  Min-20  21-72  73-120  121-364 365-Max  TOTAL YEAR D/E  Min-20  21-72  73-120  121-364  365-Max  TOTAL
1996 0.68 -1% 75% 48% 63% 73% 68% 1996 0.68 -37% 34% 37% 56% 71% 53%
1997 0.57 -6% 57% 45% 59% 72% 62% 1997 0.57 15% 33% 38% 56% 71% 51%
1998 0.54 133% 23% 21% 30% 40% 31% 1998 0.54 -10% 19% 21% 30% 39% 28%
1999 0.48 81% 18% 19% 24% 28% 24% 1999 0.48 5% 13% 17% 23% 28% 20%
2000 0.50 10% 18% 22% 26% 28% 26% 2000 0.50 5% 14% 20% 25% 28% 23%
2001 0.60 -7% 40% 38% 42% 52% 45% 2001 0.60 76% 35% 37% 40% 52% 42%
2002 0.72 28% 71% 71% 80% 74% 76% 2002 0.72 76% 68% 73% 80% 75% 75%
2003 1.00 -28% 78% 63% 96% N/A 86% 2003 1.00 25% 51% 54% 92% 0% 70%
2004 0.80 -1% 152% 62% N/A N/A 421% 2004 0.80 -31% 43% 45% 0% 0% 48%

TOTAL 0.66 12% 37% 35% 42% 45% 42% TOTAL 0.66 18% 28% 33% 41% 45% 38%

PANEL B

5 PERCENT 0 PERCENT

 Option Expiration (in Days)  Option Expiration (in Days)
D/E  Min-20  21-72  73-120  121-364  365-Max  TOTAL D/E  Min-20 21-72  73-120 21-364 365-Max  TOTAL

0.4-0.5 -25% 17% 20% 24% 27% 24% 0.4-0.5 6% 13% 18% 23% 27% 21%
0.5-0.6 12% 24% 24% 32% 39% 32% 0.5-0.6 5% 19% 22% 31% 40% 29%
0.6-0.7 19% 40% 37% 48% 57% 49% 0.6-0.7 14% 29% 35% 46% 56% 44%
0.7-0.8 -8% 67% 47% 66% 65% 65% 0.7-0.8 36% 51% 46% 62% 65% 58%
0.8-0.9 -63% 52% 55% 84% 69% 71% 0.8-0.9 17% 31% 45% 78% 69% 54%
0.9-1.0 29% 74% 67% 85% 88% 83% 0.9-1.0 295% 61% 62% 83% 91% 76%
1.0-1.2 13% 82% 82% 95% 79% 88% 1.0-1.2 62% 93% 96% 102% 88% 96%
TOTAL 12% 37% 35% 42% 45% 42% TOTAL 18% 28% 33% 41% 45% 38%

PUT ITM
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TABLE 3

PANEL A

5 PERCENT 0 PERCENT

 Option Expiration (in Days)  Option Expiration (in Days)
YEAR  Min-20  21-72  73-120  121-364  365-Max  TOTAL YEAR  Min-20  21-72  73-120  121-364  365-Max  TOTAL
1996 1,105 3,664 1,626 2,583 661 9,639 1996 1,880 6,223 2,689 3,838 945 15,575
1997 1,583 5,196 2,152 4,068 882 13,881 1997 2,564 8,081 3,147 5,604 1,191 20,587
1998 1,775 5,462 2,054 3,996 948 14,235 1998 2,794 8,010 2,825 5,103 1,275 20,007
1999 1,356 5,005 2,119 4,024 722 13,226 1999 2,460 7,295 2,760 5,128 999 18,642
2000 1,000 4,051 1,643 2,506 366 9,567 2000 1,830 5,746 2,191 3,323 574 13,664
2001 1,095 4,010 1,459 2,180 404 9,148 2001 1,759 5,527 1,971 2,965 565 12,787
2002 1,076 3,880 1,531 2,899 583 9,969 2002 1,678 5,343 2,030 3,728 758 13,537
2003 1,422 4,329 1,928 2,878 0 10,557 2003 2,357 6,452 2,525 3,608 0 14,942
2004 494 1,102 132 0 0 1,728 2004 858 1,610 179 0 0 2,647

TOTAL 10,906 36,699 14,644 25,134 4,567 91,950 TOTAL 18,180 54,287 20,317 33,297 6,307 132,388

PANEL B

5 PERCENT 0 PERCENT

 Option Expiration (in Days)  Option Expiration (in Days)
D/E  Min-20  21-72  73-120  121-364  365-Max  TOTAL D/E  Min-20  21-72  73-120  121-364  365-Max  TOTAL

0.4-0.5 1,944 6,858 3,174 4,993 948 17,917 0.4-0.5 3,483 10,032 4,127 6,484 1,340 25,466
0.5-0.6 3,485 11,986 4,455 8,601 1,783 30,310 0.5-0.6 5,701 17,537 6,231 11,133 2,424 43,026
0.6-0.7 1,972 7,121 2,941 4,820 1,097 17,951 0.6-0.7 3,314 11,120 4,449 6,982 1,562 27,427
0.7-0.8 1,359 3,845 1,178 2,108 386 8,876 0.7-0.8 2,233 5,736 1,742 2,926 535 13,172
0.8-0.9 713 2,030 955 706 52 4,458 0.8-0.9 1,194 3,181 1,285 928 69 6,657
0.9-1.0 1,061 3,352 1,337 2,584 257 8,591 0.9-1.0 1,648 4,652 1,703 3,181 320 11,504
1.0-1.2 372 1,507 602 1,322 44 3,847 1.0-1.2 607 2,029 780 1,663 57 5,136

TOTAL 10,906 36,699 14,644 25,134 4,567 91,950 TOTAL 18,180 54,287 20,317 33,297 6,307 132,388

PUT OTM

TOTAL NUMBER OF OPTIONS

 

 

Table 3, Panel B, present these same OTM index put options by time to expiration and by 

debt/equity (D/E) ratio for the same ranges of time to expiration and leverage.  Here the higher leverage 

categories (0.8 to 1.2) comprise about 18% of the OTM matched pairs. 

 

Table 4, similar to Table 2, presents the net pricing error improvement of G relative to BS by 

year and by D/E ratio for the various times to expiration and for the two definitions of ATM for all OTM 

put index options matched pairs during this sample period.  In Panel A for either ATM definition, the 

high leverage years 2002 and 2003 again exhibit G’s greatest pricing improvement of about 20% 

relative to BS for these less valuable OTM matched pairs.   
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Also as expected, in the lowest leverage years of 1999 and 2000, G exhibits the smallest pricing 

error improvement of 12% (excluding the small sample partial year 2004).  Table 4 also illustrates that 

when ATM is defined as as the two most at the money options, the previously excluded but now OTM 

options which have smaller pricing errors reduce the net pricing improvement in all years.  

 

Table 4, Panel A, again illustrates that G’s improvement increases monotonically with option 

time to expiration, from 2% to 30% on average, again because these options have a longer lasting 

leverage effect.  Table 4, Panel B, demonstrates that G’s improvement also increases monotonically with 

the D/E ratio, for every time to expiration bucket, especially when the sample number of options is 

sufficiently large.  Also, the improvement on average across all times to expiration, increases with 

leverage monotonically from a low of 12% for the lowest leverage category, 0.4 -0.5, to a high of 24% 

for the highest leverage category, 1.0-1.2.  So, as expected for these OTM matched pairs, the highest 

TABLE 4

PRICING ERROR IMPROVEMENT 
PANEL A

5 PERCENT 0 PERCENT

 Option Expiration (in Days)  Option Expiration (in Days)
YEAR D/E  Min-20  21-72  73-120  121-364 365-Max  TOTAL YEAR D/E  Min-20  21-72  73-120  121-364  365-Max  TOTAL
1996 0.68 1% 7% 13% 22% 38% 18% 1996 0.68 2% 9% 15% 24% 39% 18%
1997 0.57 2% 8% 14% 25% 40% 19% 1997 0.57 2% 9% 15% 25% 41% 19%
1998 0.54 1% 5% 8% 15% 26% 13% 1998 0.54 2% 6% 9% 15% 27% 13%
1999 0.48 2% 5% 8% 14% 23% 12% 1999 0.48 2% 6% 8% 14% 23% 12%
2000 0.50 0% 6% 9% 15% 23% 12% 2000 0.50 0% 6% 10% 16% 23% 12%
2001 0.60 3% 7% 12% 20% 35% 15% 2001 0.60 4% 8% 12% 21% 35% 15%
2002 0.72 1% 9% 13% 24% 42% 20% 2002 0.72 1% 9% 14% 25% 42% 19%
2003 1.00 3% 10% 14% 29% N/A 20% 2003 1.00 4% 11% 15% 30% N/A 20%
2004 0.80 1% 5% 8% N/A N/A 5% 2004 0.80 2% 7% 10% N/A N/A 6%

TOTAL 0.66 2% 7% 11% 19% 30% 15% TOTAL 0.66 2% 7% 11% 19% 30% 15%

PANEL B

5 PERCENT 0 PERCENT

 Option Expiration (in Days)  Option Expiration (in Days)
D/E  Min-20  21-72  73-120  121-364  365-Max  TOTAL D/E  Min-20 21-72  73-120 21-364 365-Max  TOTAL

0.4-0.5 1% 5% 8% 14% 22% 12% 0.4-0.5 2% 5% 8% 14% 22% 11%
0.5-0.6 1% 6% 10% 17% 29% 14% 0.5-0.6 2% 7% 11% 17% 30% 14%
0.6-0.7 2% 7% 12% 22% 36% 17% 0.6-0.7 3% 8% 13% 23% 37% 17%
0.7-0.8 2% 7% 12% 22% 40% 17% 0.7-0.8 3% 8% 13% 23% 40% 17%
0.8-0.9 2% 7% 12% 23% 43% 14% 0.8-0.9 3% 8% 14% 24% 43% 15%
0.9-1.0 3% 10% 14% 27% 45% 20% 0.9-1.0 3% 11% 15% 27% 45% 20%
1.0-1.2 1% 14% 17% 32% 42% 24% 1.0-1.2 0% 14% 17% 32% 42% 24%
TOTAL 2% 7% 11% 19% 30% 15% TOTAL 2% 7% 11% 19% 30% 15%

PUT OTM
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(lowest) D/E categories exhibit G’s greatest (smallest) improvement over BS.  Table 4 also shows that 

the improvement is greatest in the highest leverage years, 2002 and 2003. 

We have also tried a different volatility methodology identical to the implementation by BCC of 

basing the aggregate net pricing errors in each expiration bucket on the volatility that minimizes the sum 

of squared errors instead of on the ATM volatility.  We find that this does not change any of the 

conclusions or characteristics of our results.  This fact is not so surprising because if the volatility that 

minimizes the sum of squared pricing errors is moved away from the ATM volatility toward either the 

ITM or OTM volatilities in order to reduce their errors, then there will be an off-setting effect from the 

larger errors in the other moneyness direction.  This off-setting effect will be present independent of the 

definition of ATM (%5 or 0% most at the money).  Also, we show a one day lag in the volatility 

estimation does not change any of our conclusions.34

 

 

4.c.2 Statistical Significance of BS and G Differences in Tables 1-4  

Because the differences in each models valuation errors result from bias and are not necessarily 

normally distributed, we use non-parametric statistics to test the significance of the differences between 

BS and G’s model.  This is the same as the significance of the reported improvements, using both the 

5% ATM and the 0% (most at the money) ATM definitions.   

As can be seen in Table 5 for ITM options and Table 6 for OTM options, we find G’s model 

improvements are all significant at greater than the 99.99% level for every option expiration bucket 

except the very near expiration options.35

 

  Near expiration when market option prices are converging to 

the in or out-of-the-money boundaries there is much more noise in the pricing errors, especially for the 

out of the money options that are approaching zero. 

                                                 
34 See Appendix I for these results with implementation identical to BCC (1997). 
35 Furthermore, when using a volatility that is minimizing the sum of squared errors these significance results also hold, and 
the near expiration options remain significantly different as others have reported (see Heston and Nandi (2000). 
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TABLE 5

PANEL A

5 PERCENT 0 PERCENT

 Option Expiration (in Days)  Option Expiration (in Days)
YEAR  Min-20  21-72  73-120  121-364  365-Max  TOTAL YEAR  Min-20  21-72  73-120  121-364  365-Max  TOTAL
1996 0.8330 0.0000 0.0000 0.0000 0.0000 0.0000 1996 0.5525 0.0000 0.0000 0.0000 0.0000 0.0000
1997 0.7702 0.0000 0.0000 0.0000 0.0000 0.0000 1997 0.4056 0.0000 0.0000 0.0000 0.0000 0.0000
1998 0.4492 0.0000 0.0000 0.0000 0.0000 0.0000 1998 0.6659 0.0000 0.0000 0.0000 0.0000 0.0000
1999 0.6734 0.0000 0.0000 0.0000 0.0000 0.0000 1999 0.3643 0.0000 0.0000 0.0000 0.0006 0.0000
2000 0.9489 0.0000 0.0000 0.0000 0.0000 0.0000 2000 0.2872 0.0000 0.0000 0.0000 0.0000 0.0000
2001 0.6825 0.0000 0.0000 0.0000 0.0000 0.0000 2001 0.1553 0.0000 0.0000 0.0000 0.0000 0.0000
2002 0.7099 0.0000 0.0000 0.0000 0.0000 0.0000 2002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2003 0.8178 0.0000 0.0000 0.0000 0.0000 0.0000 2003 0.0007 0.0000 0.0000 0.0000 0.0000 0.0000
2004 0.8882 0.0001 0.0072 0.0000 0.0000 0.0007 2004 0.7271 0.0000 0.0016 0.0000 0.0000 0.0000

TOTAL 0.9974 0.0000 0.0000 0.0000 0.0000 0.0000 TOTAL 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

PANEL B

5 PERCENT 0 PERCENT

 Option Expiration (in Days)  Option Expiration (in Days)
D/E  Min-20  21-72  73-120  121-364  365-Max  TOTAL D/E  Min-20  21-72  73-120  121-364  365-Max  TOTAL

0.4-0.5 0.6345 0.0000 0.0000 0.0000 0.0000 0.0000 0.4-0.5 0.3211 0.0000 0.0000 0.0000 0.0000 0.0000
0.5-0.6 0.7927 0.0000 0.0000 0.0000 0.0000 0.0000 0.5-0.6 0.1387 0.0000 0.0000 0.0000 0.0000 0.0000
0.6-0.7 0.7547 0.0000 0.0000 0.0000 0.0000 0.0000 0.6-0.7 0.2989 0.0000 0.0000 0.0000 0.0000 0.0000
0.7-0.8 0.7005 0.0000 0.0000 0.0000 0.0000 0.0000 0.7-0.8 0.2959 0.0000 0.0000 0.0000 0.0000 0.0000
0.8-0.9 0.5363 0.0000 0.0000 0.0000 0.0000 0.0000 0.8-0.9 0.1855 0.0000 0.0000 0.0000 0.0000 0.0000
0.9-1.0 0.2165 0.0000 0.0000 0.0000 0.0000 0.0000 0.9-1.0 0.0037 0.0000 0.0000 0.0000 0.0000 0.0000
1.0-1.2 0.6204 0.0000 0.0000 0.0000 0.0000 0.0000 1.0-1.2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
TOTAL 0.9974 0.0000 0.0000 0.0000 0.0000 0.0000 TOTAL 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

PUT ITM

Rank Sum Test  p  Value

TABLE 6

PANEL A

5 PERCENT 0 PERCENT

 Option Expiration (in Days)  Option Expiration (in Days)
YEAR  Min-20  21-72  73-120  121-364  365-Max  TOTAL YEAR  Min-20  21-72  73-120  121-364  365-Max  TOTAL
1996 0.8991 0.0000 0.0000 0.0000 0.0000 0.0000 1996 0.5776 0.0000 0.0000 0.0000 0.0000 0.0000
1997 0.7483 0.0000 0.0000 0.0000 0.0000 0.0000 1997 0.4204 0.0000 0.0000 0.0000 0.0000 0.0000
1998 0.8349 0.0049 0.0000 0.0000 0.0000 0.0000 1998 0.5096 0.0001 0.0000 0.0000 0.0000 0.0000
1999 0.8563 0.0016 0.0000 0.0000 0.0000 0.0000 1999 0.4575 0.0001 0.0000 0.0000 0.0000 0.0000
2000 0.8385 0.0010 0.0000 0.0000 0.0000 0.0000 2000 0.3697 0.0001 0.0000 0.0000 0.0000 0.0000
2001 0.6866 0.0000 0.0000 0.0000 0.0000 0.0000 2001 0.2923 0.0000 0.0000 0.0000 0.0000 0.0000
2002 0.7554 0.0000 0.0000 0.0000 0.0000 0.0000 2002 0.6549 0.0000 0.0000 0.0000 0.0000 0.0000
2003 0.5709 0.0000 0.0000 0.0000 0.0000 0.0000 2003 0.1099 0.0000 0.0000 0.0000 0.0000 0.0000
2004 0.9624 0.3538 0.0299 0.0000 0.0000 0.4965 2004 0.6776 0.0505 0.0437 0.0000 0.0000 0.1053

TOTAL 0.5261 0.0000 0.0000 0.0000 0.0000 0.0000 TOTAL 0.0385 0.0000 0.0000 0.0000 0.0000 0.0000

PANEL B

5 PERCENT 0 PERCENT

 Option Expiration (in Days)  Option Expiration (in Days)
D/E  Min-20  21-72  73-120  121-364  365-Max  TOTAL D/E  Min-20  21-72  73-120  121-364  365-Max  TOTAL

0.4-0.5 0.8264 0.0018 0.0000 0.0000 0.0000 0.0000 0.4-0.5 0.3860 0.0000 0.0000 0.0000 0.0000 0.0000
0.5-0.6 0.7413 0.0000 0.0000 0.0000 0.0000 0.0000 0.5-0.6 0.2519 0.0000 0.0000 0.0000 0.0000 0.0000
0.6-0.7 0.7948 0.0000 0.0000 0.0000 0.0000 0.0000 0.6-0.7 0.3628 0.0000 0.0000 0.0000 0.0000 0.0000
0.7-0.8 0.8772 0.0190 0.0000 0.0000 0.0000 0.0000 0.7-0.8 0.5509 0.0001 0.0000 0.0000 0.0000 0.0000
0.8-0.9 0.8929 0.0088 0.0000 0.0000 0.0000 0.0000 0.8-0.9 0.5244 0.0000 0.0000 0.0000 0.0000 0.0000
0.9-1.0 0.6409 0.0000 0.0000 0.0000 0.0000 0.0000 0.9-1.0 0.3341 0.0000 0.0000 0.0000 0.0000 0.0000
1.0-1.2 0.6741 0.0000 0.0000 0.0000 0.0000 0.0000 1.0-1.2 0.4887 0.0000 0.0000 0.0000 0.0000 0.0000
TOTAL 0.5261 0.0000 0.0000 0.0000 0.0000 0.0000 TOTAL 0.0385 0.0000 0.0000 0.0000 0.0000 0.0000

PUT OTM

Rank Sum Test  p  Value
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4d.  Comparisons of Absolute and Relative Distance from the Market for G, BCC, and BS 

The previous tables of results in 4c focused on BS biases and G’s improvements relative to BS 

pricing errors.  In this section we examine all matched pairs for distance differences to see which model 

is closest to the market price as measured by the absolute dollar and relative per cent distance from the 

market price.36

Time to Expiration Figures   

  Now BCC is included in the comparisons with BS and G. Thus, for all matched pairs 

comparing BCC, BS, and G we determine which model is closest to the market price, and we also 

compute the relative percent pricing error.  First we present Figures for the average distances across both  

both time to expiration and moneyness.   

Figure 5A.(I) presents the average ITM absolute dollar pricing errors for matched pairs of index 

options with different times to expiration for BCC’s SVJ, BS, and G.  The average is across all strike 

prices for options having the same number of days expiration and ATM is 5%. 

 
                                                 
36 For brevity we leave out Figures 5.A(2) and 5.B(2) of relative percent valuation errors, but these are available by request.  
However, we report here that G looks even better with the relative percent errors, especially for OTM options whose prices 
are lower which increases the percent errors. 
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Figure 5.A(1) shows G is on average always closer to the market price than BS for ITM options 

with different times to expiration.  And similarly, G is on average almost always closer to the market 

price than BCC’s best model, SVJ.  Furthermore, BCC’s SVJ model is on average almost always closer 

to the market price than the BS model. 37

Figure 5B.(I) presents similar average absolute dollar pricing errors comparisons for OTM 

matched pairs of index options for different times to expiration for BS, BCC’s SVJ, and G. 

                            

 

 

 

This graph again demonstrates that on average G is always closer to the market price than BS, 

and G is on average more often closer to the market price than BCC’s SVJ model for OTM options with 

different times to expiration.  Likewise, in this OTM comparison BCC’s SVJ model again appears to be 

on average closer to the market price than the BS model.   

 

                                                 
37 Here we present only the stochastic volatility with jumps version of BCC (SVJ) because it performs best.  The comparisons 
to BCC’s other models, SVSI and SV are available by request.  However, we note here that BCC’s SVJ and SV are much 
closer to the market price than the SVSI model. 
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Moneyness Figures 

Figure 6.A(I) presents the average ITM absolute dollar pricing errors versus moneyness, where 

ITM moneyness ranges from 1.05 to 1.25 when ATM is defined as 5%.  The average is taken across 

different expirations for matched pairs of index put options with the same moneyness. 

 

 

G is again shown to be always closer on average to the market price than both the BS model and 

BCC’s SVJ model for the entire range of ITM amounts.  In this Figure 6.A(1) the comparison of BCC’s 

SVJ to BS shows that visually they are somewhat similar, but actually more detail from the tables which 

follow reveals that BCC is closer to the market for a greater number of matched pairs.   

Figure 6B(I) presents the average absolute pricing errors for OTM index options for different  

moneyness amounts when ATM is defined as 5%. 
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  This graph again demonstrates that G is on average always closer to the market price than both 

BCC’s SVJ model and the BS model for OTM options as index option moneyness varies from 0.95 to 

0.80.  Here BCC’s SVJ is on average sometimes closer to the market price than BS, but sometimes not 

as close.  However, again more detail from the tables which follow shows that BCC is closer to the 

market price for more matched pairs of OTM options than BS is when both are compared to G.  

The above Figures of absolute dollar pricing errors for different option times to expiration and 

for different option moneyness present a visual image of G, BCC’s SVJ, and BS valuation errors in 

terms of distance from the market price.  Each graph is constructed from thousands of matched pairs of 

options (options with the same strike K and time to expiration T).  The superiority of G relative to BCC 

and BS in terms of closeness to the market price is highly statistically significant in all these 

comparisons.38

The next section, 4e, presents evidence on the economic significance of the differences between 

BCC’s SVJ, BS, and G.  However, before we proceed to the discussion of economic significance, now, 

after examining these Figures portraying each model’s distance from the market price, is a good place to 

   

                                                 
38 Again for brevity we do not include these tables.  However they are available upon request. 
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recall why the comparison of the G and BCC models with much more complexity to the simpler BS 

model is important.  BS without leverage is a special case of G, or conversely, G is BS with leverage.  

So the addition of leverage to BS is enough to make G (or BS with leverage) on average always closer to 

the market prices than BCC’s best model SVJ for both ITM and OTM options with respect to 

moneyness shown in Figures 6.A(1) and 6.A(2).  Furthermore, Figures 5.A(1) and 5.A(2) show that G 

(BS with leverage) is on average always closer than BS without leverage for both ITM and OTM 

options with respect to time to option expiration, and G is almost always closer to the market prices than 

BCC’s SVJ model for both ITM and OTM options with respect to time to option expiration.   

This improvement of BS with the inclusion of leverage (i.e. G) cannot be attributed to the term 

structure of volatility because BS without leverage was implemented with exactly the same volatility 

term structure buckets using the same ATM option prices to imply the volatilities used for all option 

valuations in the four time buckets.  Thus, the improvement to BS when leverage is included in the 

model must be attributed to leverage and not the term structure of volatility.   

Furthermore, as stated earlier, G, using only 5 explicit parameters (D or V plus the four 

volatilities in this term structure), is on average closer to the market prices than BCC’s best model, SVJ, 

which is using 9 parameters in this implementation, and so still has a large parametric advantage.  

However, recall the G’s model with leverage implies a stochastic equity volatility process, with negative 

equity return-volatility correlation, and an altered equity return distribution with a fatter left tail and 

thinner right tail than the normal distribution, all which change when leverage changes.  So, one might 

reason that G’s model implicitly includes the four additional parameters which BCC must assume and 

estimate for their stochastic volatility process. 
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4e.  Economic Significance of G’s Improvements Compared to BS and BCC 

 

To complement the previous figures and tables comparing the pricing errors and distance from 

the market price of G, BS, and BCC’s SVJ, here we report the economic significance.  Economic 

significance as defined here does not mean the market is inefficient or an ability to “beat the market”. 39 

Instead we compare all matched pairs where one model is closer than the other, and find the total dollar 

improvements of each model and the net dollar improvement of the better model, and convert that to a 

basis point per option net improvement for ITM and OTM options.  Specifically, Tables 7d and 8d show 

results when G’s model is compared to BCC’s best model, SVJ in the following ways: i) by the number 

of matched pairs that G’s or BCC’s model value is a closer absolute distance to the market price, ii) by 

the dollar value of G’s and BCC’s improvement when each model is closer to the market price, and iii) 

by the net basis points per option (bp) that the better model’s improvement implies for a portfolio of 1 

of each option in all matched option pairs.  These comparisons are categorized by both calendar year and 

by leverage.40

First, consider Table 7d comparing G’s compound option (CO) model and BCC’s SVJ model for 

ITM options when ATM is defined as either 5% (or 0%).  In Panel A the columns left to right represent 

the year(first year is 1996), the present value of all ITM put index option matched pairs for that year for 

which improvement is measured ($79,072.04), the total number of the matched pairs for that year for 

which improvement is measured (1,573), the number of those matched pairs where BCC’s SVJ is closer 

to the market price in absolute distance (391), the number of matched pairs where G is similarly closer 

to the market price (1,182), the dollar value of the SVJ improvement ($392.82), the dollar value of G’s 

 

                                                 
39 To reinforce this definition, economic improvements are relative to the alternative model, not the market, and in no way do 
the improvements imply option market inefficiency or arbitrage opportunities.  They could be thought of as the advantage 
one trader using a better model would have over another trader using a lesser model. 
40 For brevity we omit the tables 7a and 8a showing the economic improvements of G relative to BS.  We also omit the 
similar tables 7b, 7c, and 8b, 8c comparing G to BCC’s SVSI and SV.  However, all these tables are available upon request.  
We do mention some of the results of the comparison of G to BS because they are somewhat relevant to the comparison of G 
to BCC’s SVJ. 
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improvement ($4,230.80), and the net basis point advantage (or disadvantage) per option of G’s model 

for that year (493 bp).  

The total number of ITM matched pairs of options presented in Table 7d, Panels A and B,  

comparing BCC’s SVJ to G, for the two ATM definitions of 5(0)% is 23,792 (59,569), respectively. G’s 

model is closer to the market price than the BCC’s SVJ model for 15,123 (43,733) of these 23,792 

(59,569) ITM matched pairs, or about 75% (for the 0% ATM) of the matched pairs, and BCC is closer 

on 8,669 (15,836) pairs, or about 25% (for the 0% ATM) of the matched pairs.  Note that in two of the 8 

sample years, 1998 and 1999, when leverage was decreasing and the lowest (0.4 to 0.6), BCC’s SVJ had 

more options closer to the market price than G.  However, even in these two years G’s model had an 

economic advantage because when BCC’s model mis-valued the matched pairs, the BCC errors were 

large.  Thus, in all the sample years G’s model has an economic advantage over BCC’s model. 

If Table 7a were included here, it would show the total number of ITM matched pairs of options 

presented in similar Panels A and B, comparing BS to G, for the two ATM definitions of 5% (0%) is 

22,853 (50,452).  G’s model is closer to the market price than the BS model for 19,837 (44,812) of these 

ITM matched pairs, or about 90% (for the 0% ATM) of the matched pairs, and BS is closer on 3,016 

(5,640), or about 10% (for the 0% ATM) of the matched pairs.41

Table 7d shows that by G being closer to the market price than SVJ on about 75% of the ITM 

option matched pairs results in a basis point (bp) net improvement on average of 202 bp (298 bp) for 

ITM options in a portfolio containing one of each option when ATM is defined as 5% (0%), 

 Thus, BCC’s SVJ model is closer to the 

market price than G’s model for greater percentage, 25%, of these ITM matched pair comparisons, than 

the BS model which is closer to the market price for only 10% of these matched pair comparisons.  This 

confirms the visual conclusions drawn from Figures 5 and 6 that BCC’s SVJ is closer to the market than 

BS for a greater number of matched pair comparisons of ITM options for both the time to expiration and 

moneyness comparisons. 

                                                 
41 If the two models have the same value for a matched pair then there is no improvement of one model to the other.    
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respectively.  These numbers are calculated by constructing a portfolio containing one option for each 

strike price and time to expiration for each day and finding the market value of that option portfolio each 

day for all days in a year. 

In the following we explain in more detail the computation of the dollar and basis point 

improvement.  More specifically, dollar improvement for each model is measured by considering all 

those matched pairs where a specific model is closer to the market price than the alternative model in 

absolute distance measured in dollars.  The basis point advantage of G’s model is then computed by 

dividing the net dollar improvement for that year or leverage category by the total value of options in 

that category.  For example, in Table 7d, Panel A, across the sample years 1996-2004, for the ±5% ATM 

definition, G’s option model has a total dollar improvement of $86,447.64 and SVJ has a total dollar 

improvement of $25,614.92.  Thus, the net dollar improvement of G’s model is $60,832.72, and that 

divided by the total value of each option in this ITM portfolio, $3,014,765.16, produces the 202 net basis 

point improvement per option.  When the “0%” ATM definition of the two most at-the-money options is 

used this ITM portfolio value increases to $4,643,089.17 because of the inclusion of previously 

excluded 5% ATM options.  Here, this larger number of near the money options increases the average 

errors, and the basis point improvement of G relative to SVJ rises to 298 bp per option.  While the 

percent pricing error of G’s improvement relative to BCC’s SVJ is monotonic in leverage, the basis 

point improvement need not be since this depends on the dollar value of the options.   

In summary, the above discussion showed that BCC’s SVJ model is closer to the market price 

for a greater percentage (25%) of the viable matched pair comparisons than the BS model is for similar 

comparisons (10%), confirming the visual perspective from Figures 5 and 6.  Furthermore, Table 7d also 

shows the net basis points net improvements per option from using G’s model and being closer than 

BCC’s SVJ model to the market price for the two definitions of ATM are on average 202 bp (298 bp), 

respectively, for ITM options.  
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Now, consider Table 8d comparing G and BCC’s SVJ model for OTM options when ATM is 

defined as 5% (0%).  Table 8d, Panels A and B, incorporates the same format as Table 7d.  The number 

of OTM matched pairs of options compared in Table 8d, Panels A and B, for the two ATM definitions 

of 5% (0%) is  95,186 (139,016), respectively.  G’s model is closer to the market price than the SVJ 

model for 58,466 (90,230) of these matched pairs.  So, by comparison we see that G is closer to the 

OTM put market prices than SVJ on about 65% of the OTM matched pairs.   

If Table 8a were included here, it would show the total number of OTM matched pairs of options 

presented in similar Panels A and B, comparing BS to G, for the two ATM definitions of 5% (0%) is 

75,300 (109,301).  G’s model is closer to the market price than the BS model for 75,052 (108,437) of 

these OTM matched pairs, or about 99% (for the 0% and ±5% ATM) of the matched pairs, and BS is 

TABLE 7d

PANEL A

5 PERCENT 0 PERCENT

YEAR PV  NUMBER  NUMBER  NUMBER YEAR PV  NUMBER  NUMBER  NUMBER
 TOTAL  SVJ  CO  SVJ  CO  BP  TOTAL  SVJ  CO  SVJ  CO  BP

1996 79,072.04 1,573 391 1,182 329.82 4,230.80 493 1996 183,324.83 6,397 1,166 5,231 732.77 10,583.26 537
1997 217,458.61 2,639 586 2,053 757.11 9,266.80 391 1997 412,350.17 8,095 1,647 6,448 1,564.58 18,309.07 406
1998 376,015.80 3,002 1,581 1,421 6,639.27 9,274.37 70 1998 608,368.59 7,683 2,773 4,910 8,468.84 19,988.20 189
1999 357,965.77 2,479 1,273 1,206 4,984.50 9,118.25 115 1999 641,774.79 7,212 2,674 4,538 7,234.48 20,830.87 212
2000 488,897.60 3,226 1,331 1,895 4,798.93 17,685.53 264 2000 740,235.07 7,578 2,327 5,251 6,245.29 32,654.83 357
2001 570,739.54 3,780 1,388 2,392 3,446.13 15,463.91 211 2001 766,336.47 7,292 2,008 5,284 4,115.08 26,238.94 289
2002 660,335.65 4,566 1,668 2,898 4,241.06 13,896.23 146 2002 861,905.90 8,503 2,387 6,116 4,871.96 24,000.43 222
2003 250,669.40 2,372 432 1,940 405.62 6,770.92 254 2003 394,330.70 5,971 801 5,170 602.53 16,500.03 403
2004 13,610.75 155 19 136 12.50 740.84 535 2004 34,462.65 838 53 785 23.61 3,281.54 945

TOTAL 3,014,765.16 23,792 8,669 15,123 25,614.92 86,447.64 202 TOTAL 4,643,089.17 59,569 15,836 43,733 33,859.14 172,387.18 298

PANEL B

5 PERCENT 0 PERCENT

D/E PV  NUMBER  NUMBER  NUMBER D/E PV  NUMBER  NUMBER  NUMBER
 TOTAL  SVJ  CO  SVJ  CO  BP  TOTAL  SVJ  CO  SVJ  CO  BP

0.4-0.5 420,222.04 3,031 1,392 1,639 4,942.22 12,476.58 179 0.4-0.5 755,611.72 9,117 3,009 6,108 7,442.42 27,686.70 268
0.5-0.6 951,473.88 7,294 2,997 4,297 10,657.27 30,545.20 209 0.5-0.6 1,533,142.65 18,778 5,724 13,054 14,260.58 59,865.09 297
0.6-0.7 559,615.99 4,901 1,680 3,221 4,393.02 16,875.37 223 0.6-0.7 839,075.37 12,810 3,117 9,693 5,491.15 31,999.68 316
0.7-0.8 320,544.42 2,751 749 2,002 1,302.19 11,198.97 309 0.7-0.8 489,485.40 7,168 1,335 5,833 1,744.12 22,136.57 417
0.8-0.9 136,328.83 1,108 293 815 376.50 3,837.10 254 0.8-0.9 204,639.08 2,915 492 2,423 508.94 9,429.56 436
0.9-1.0 361,897.00 2,702 781 1,921 1,842.41 7,817.97 165 0.9-1.0 482,123.65 5,295 1,113 4,182 2,102.89 14,677.66 261
1.0-1.2 264,683.00 2,005 777 1,228 2,101.30 3,696.45 60 1.0-1.2 339,011.30 3,486 1,046 2,440 2,309.04 6,591.93 126
TOTAL 3,014,765.16 23,792 8,669 15,123 25,614.92 86,447.64 202 TOTAL 4,643,089.17 59,569 15,836 43,733 33,859.14 172,387.18 298

PUT ITM: CO vs. SVJ

BASIS POINT IMPROVEMENTS
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closer on 3,016 (5,640), or about 1% (for the 0% and ±5% ATM) of the matched pairs.42

 

 Thus, BCC’s 

SVJ model is closer to the market price than G’s model for a greater percentage, 35%, of these OTM 

matched pair comparisons, than the BS model which is closer to the market price for only 1% of these 

matched pair comparisons.  This confirms the visual conclusions drawn from Figures 5 and 6 that 

BCC’s SVJ is closer to the market than BS for a greater number of matched pair comparisons of OTM 

options for both the time to expiration and moneyness comparisons. 

 

 

                                                 
42 If the two models have the same value for a matched pair then there is no improvement of one model to the other.    

TABLE 8d

PANEL A

5 PERCENT 0 PERCENT

YEAR PV  NUMBER  NUMBER  NUMBER YEAR PV  NUMBER  NUMBER  NUMBER
 TOTAL  SVJ  CO  SVJ  CO  BP  TOTAL  SVJ  CO  SVJ  CO  BP

1996 36,385.06 9,833 3,782 6,051 4,622.77 27,018.40 6155 1996 97,942.54 16,094 6,011 10,083 6,187.83 34,105.97 2850
1997 99,538.62 14,248 4,893 9,355 8,483.23 51,442.51 4316 1997 234,445.61 21,396 6,924 14,472 10,253.84 63,708.62 2280
1998 193,574.20 14,806 6,460 8,346 25,954.88 63,466.75 1938 1998 368,363.34 21,044 8,514 12,530 29,326.13 78,609.07 1338
1999 215,100.97 13,608 5,897 7,711 27,879.13 70,066.39 1961 1999 422,073.41 19,597 7,584 12,013 31,280.04 90,517.57 1403
2000 113,132.19 9,846 3,143 6,703 9,813.77 63,719.18 4765 2000 254,607.18 14,325 4,175 10,150 11,558.33 83,004.16 2806
2001 109,375.51 9,477 3,629 5,848 9,417.92 40,299.83 2823 2001 232,489.34 13,433 4,538 8,895 10,589.97 52,836.57 1817
2002 124,487.71 10,424 4,359 6,065 10,210.80 42,162.83 2567 2002 240,924.57 14,309 5,269 9,040 11,125.66 53,052.86 1740
2003 75,299.52 11,108 4,156 6,952 8,240.83 42,537.50 4555 2003 167,623.06 15,945 5,152 10,793 9,086.26 54,321.52 2699
2004 3,280.94 1,836 401 1,435 594.43 11,080.22 31960 2004 12,176.18 2,873 619 2,254 823.54 14,140.68 10937

TOTAL 970,174.72 95,186 36,720 58,466 105,217.76 411,793.60 3160 TOTAL 2,030,645.23 139,016 48,786 90,230 120,231.61 524,297.02 1990

PANEL B

5 PERCENT 0 PERCENT

D/E PV  NUMBER  NUMBER  NUMBER D/E PV  NUMBER  NUMBER  NUMBER
 TOTAL  SVJ  CO  SVJ  CO  BP  TOTAL  SVJ  CO  SVJ  CO  BP

0.4-0.5 211,067.61 17,073 6,597 10,476 27,533.77 98,909.25 3382 0.4-0.5 442,620.03 24,904 8,765 16,139 31,689.31 126,167.61 2135
0.5-0.6 379,758.37 31,832 12,352 19,480 41,819.60 140,692.88 2604 0.5-0.6 767,360.30 45,652 16,269 29,383 47,389.56 177,979.29 1702
0.6-0.7 137,613.54 18,199 6,945 11,254 13,233.11 63,977.76 3687 0.6-0.7 319,407.35 28,175 10,110 18,065 16,042.81 81,942.49 2063
0.7-0.8 79,401.75 10,126 3,703 6,423 7,544.93 46,763.91 4939 0.7-0.8 175,064.50 15,210 5,026 10,184 8,685.09 58,856.40 2866
0.8-0.9 25,226.76 4,562 1,464 3,098 2,826.34 21,138.87 7259 0.8-0.9 63,824.64 6,968 2,017 4,951 3,335.82 27,420.64 3774
0.9-1.0 84,072.19 9,071 3,760 5,311 8,392.22 29,378.59 2496 0.9-1.0 164,429.77 12,331 4,422 7,909 8,980.60 37,780.53 1752
1.0-1.2 53,034.50 4,323 1,899 2,424 3,867.80 10,932.34 1332 1.0-1.2 97,938.64 5,776 2,177 3,599 4,108.41 14,150.08 1025
TOTAL 970,174.72 95,186 36,720 58,466 105,217.76 411,793.60 3160 TOTAL 2,030,645.23 139,016 48,786 90,230 120,231.61 524,297.02 1990

PUT OTM: CO vs. SVJ

BASIS POINT IMPROVEMENTS
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The economic improvement of G relative to BCC’s SVJ results in a much larger dollar 

improvement for OTM put options relative to ITM options for the two definitions of ATM of 

$411,793.60 ($524,297.02), respectively, while BCC has a dollar improvement for OTM index puts of 

$105,217.76 ($120,231.61). 

Thus, the net dollar improvement of G’s  option model is $306,575.84 ($404,065), and that 

divided by the total value of each option in the OTM portfolios, $970,174.72 ($2,030,645.23) produces a 

3160 (1990) basis point improvement.  Here, the basis points improvements of G relative to BCC’s SVJ 

model for OTM index put options for the two ATM comparisons are much greater relative to the ITM 

basis point improvements.  This occurs because BCC’s SVJ model produces more extreme values for 

OTM options.43

In this section we have demonstrated considerable economic improvement of G’s model with 

leverage relative to the BCC’s SVJ or BS models without leverage when pricing the world’s most 

widely traded equity index options on the S&P 500.  We have shown that the data necessary to 

implement G’s model for valuing index options are easily available and are the same Compustat, CRSP, 

and Option Metrics data used in most asset and option pricing research.  While G’s compound option is 

often considered to be an exotic option, we have shown here and in another paper that G, as expected 

clearly dominates the seminal BS model when pricing the world’s most common options, those on 

individual stocks (Geske-Zhou, 2007a) and those on stock indexes.  We have also shown that by the 

inclusion of leverage G’s model is able to compete with the more complex BCC’s best SVJ model, even 

though G’s model as implemented here uses fewer explicit parameters, 5, compared to BCC’s SVJ 

model, as implemented here with 9 parameters.  We have shown that G’s improvement must be 

attributed to leverage and not to the term structure of volatility.  We have also shown that BCC’s 

models, if implemented consistently, when data permits, with a term structure of volatility, would have 

 

                                                 
43 All of these conclusions are statistically significant at the 99.99 % level as before.  The tables are omitted for brevity but 
are available upon request. 
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an even more unfair parametric advantage.  We have also reasoned why G’s model with fewer explicit 

parameters, but more implicit parameters, is thus more parsimonious and still effective.  Finally, we 

have shown that while leverage is important it is not able to completely close the gap between the 

market and model prices.  Since jumps are shown here and elsewhere, we have stated that both BCC and 

G could include leverage with jumps at the firm level which would provide a more parsimonious model, 

since the stochastic volatility process is implicit, and perhaps produce an even better option pricing 

model. 

 

5. Conclusions 

 

This paper demonstrates the Geske option model can be used effectively to value the world’s most 

widely traded equity index options on the S&P 500 using only contemporaneous market price data.  The 

Geske option model characterizes how the market value of aggregate leverage causes the market equity 

index risk to change stochastically and inversely with both the implied market value of aggregate 

leverage and with the return on the index.  We believe we are the first to measure and show the 

importance of the implied market value of debt and stochastic leverage on asset prices.  We have shown 

empirically that both the implied market value of the aggregate debt and the time series variations in this 

implied market value of aggregate leverage is sufficient to produce very significant statistical and 

economic improvements by Geske’s model compared to models which omit leverage, such as the more 

complex models of Bakshi, Cao, Chen (SV, SVSI, & SVJ) and the seminal model of Black-Scholes.  

These improvements are shown to be conclusively and directly related to the leverage.  Furthermore, we 

show why the improvements are greater for options with longer time to expiration because these options 

are effected by leverage for a longer period.  We demonstrate the relative improvements attributable to 

leverage are both statistically and economically significant for all strikes and all times to expiration.  We 

also demonstrate that these conclusions are independent of the implementation methodologies required 
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for the more complex models discussed.  We explain why G’s model, which includes implicitly 

stochastic equity volatility, negative equity return-volatility correlation, and an equity return distribution 

that has a fatter left tail and thinner right tail parsimonious model, is able to compete with BCC’s SVJ 

model which must explicitly characterize this stochastic equity volatility with many more parameters to 

estimate.   However, we show that after including leverage there is still room for improvement, and 

perhaps incorporating jumps with leverage at the firm level would result in an even better model. 

 This research can be further extended to other contracts involving leverage, such as 

mortgages and cross currency swaps, credit derivatives, such as credit default swaps, and credit spread 

options.  Risk neutral insolvency probabilities could be estimated for the market as measures of country 

credit rating migrations and systemic credit risk.44

 

 In addition this paper provides and new methodology 

for assessing the implied market value of corporate debt which may be more informative than the 

current use of either i)“matrix pricing” based on matrix interpolations between bond maturities, 

coupons, and ratings which is done because most corporate bonds to not trade daily like corporate stock, 

or ii) the book or face value of corporate debt. 

 

 

 

  

                                                 
44 See Delianedis and Geske (2000) for evidence of the information in risk neutral default probabilities, and see Chan-Lau 
and Santos for an approach similar to this for country public debt sustainability and management. 
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