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Abstract

In the presence of positive feedback trading, there may be market overreaction, which is not
removed but even accentuated by rational speculation. We examine the question of how likely
this possibility is in a multi-period model. We show that overreaction can be ruled out under
fairly general assumptions and tends to be weak otherwise and that rational speculation most
likely stabilizes prices.

JEL classification: G12, G14

Key words: market efficiency, positive feedback trading



1 Introduction

The theory of behavioral finance addresses the impact of rational speculation on equilibrium asset
prices in the presence of irrational market participants in two different ways. In one strand of the
literature (Shleifer and Vishny, 1997, Arnold, 2009), rational speculation stabilizes prices but is of
limited efficacy, in that it possibly fails to bring prices to fundamental value. A second strand of the
literature stresses that rational speculation may itself be destabilizing. The prototype model of this
second setup was developed by De Long et al. (1990a, henceforth: DSSW). In their model, positive
feedback traders exert positive demand in response to past price increases. Rational speculators
bid up the asset price above the expected value of the asset’s payoff, because they anticipate that
they will be able to unload their holdings to non-rational agents before the overvaluation becomes
apparent. In the absence of rational speculators, the price is equal to the expected value of the
asset’s payoff. So rational speculation is destabilizing in this model. In view of the prevalence of
mechanisms that cause positive feedback effects, such as extrapolative expectations or stop-loss
orders (cf. DSSW, Section I, pp. 381 ff.), this is an important result.

The present paper addresses the question of how general the result that rational speculation causes
market overreaction, thereby destabilizing prices, is. To do so, we re-examine the DSSW model.
The main difference compared to DSSW’s model with three trading perdios is that we allow for
a longer time horizon, so that we can consider different time patterns with regard to how long
before the realization of the asset’s payoffs a signal arrives and how feedback traders react to price
increases in the recent and more distant past. The results raise some skepticism as to whether
rational speculation causes overreaction and destabilizes prices. We show that there cannot be any
market overreaction if the time span between the arrival of news and the realization of payoffs is
longer than the time span over which changes in prices induce feedback trading. This casts doubt
on whether the interaction of rational traders and positive feedback traders helps explain bubbles
which start due to good news about an event in the more distant future and inflate over an extended
period of time. Moreover, we argue that the magnitude of overreaction, if it occurs, tends to be
low. This is because it is the feedback to one single price increase that determines the degree of
overreaction. If large positions held by feedback traders are the sum of small reactions to many
price changes, the feedback traders’ positions are small and overreaction is weak. Finally, we show
that if price increases further in the past have a weaker impact on feedback traders’ demand, then
rational speculation is stabilizing, rather that destabilizing.

The paper is organized as follows. Section 2 describes the model. Section 3 derives some useful

results characterizing the agents’ investment decisions. Sections 4-6 focus on illustrative special



cases of the model. The general case is treated in Section 7. Section 8 concludes.

2 Model

We consider the DSSW model with one essential generalization: we allow for additional time periods
in which no payoffs are realized and no information is revealed. We restrict attention to the case
of a noiseless signal.

There are T' + 2 trading dates (t = 0,1,...,T+ 1, T > 2) and three types of agents: a measure one
of positive feedback traders, a measure p of informed rational speculators, and a measure 1 — y of
passive investors, where 0 < p < 1. Superscripts f, r, and e are used in order to distinguish variables
referring to positive feedback traders, informed speculators, and passive investors, respectively.
There are one consumption good and one safe and one risky asset. The safe asset is in perfectly
elastic supply. Its rate of return is zero. The supply S (> 0) of the risky asset is exogenous. The
asset pays v + ® + 60 at T'+ 1, where v (> 0) is safe and ¢ and 6 are random variables with mean
zero and positive, finite variances o3 and 03, respectively. ® is symmetrically distributed, and 6
is independent of ®. The realization of ® becomes known to informed rational speculators at date
T" and to passive traders at date 7° (0 < 7" < T° < T'). No-one receives a signal about 6 before
T + 1. The asset pays no dividends before T+ 1.

The three types of agents consume only at the final date T'+ 1. Let p; denote the price of the asset
and D! (i = f,r,e) the amount of the asset held by a type-i trader at date t (= 0,1,...,7T). The
feedback traders’ demand for the asset is D{ =6 at dates t = 0,1 and

t—1
DI =5+ BiAp, t=2.3,....T, (1)
=1

where Apy = pr—pi—1,0< I < S,and 5, >0 (I =1,2,...,7—1). That is, demand rises in response
to past price increases. We often consider special cases of the model in which only the first feedback
parameter 31 (= ) is positive. For the greater part of the analysis, we further assume that 6 = S.
However, we allow for § # S to begin with, for this is essential in order to distinguish fundamental

and non-fundamental risk. The passive investors’ demand is
D =a(v+ E®—p), t=0,1,...,T. (2)

E:® is the expectation of ® based on the observation of the signal at 7€, i.e., Et® = 0 for t =
0,1,...,7°—1,and Et® = & fort =T°,T°+1,...,T. That is, passive investors buy if they perceive
that the dividend exceeds the asset price, and vice versa. They do not use the current price level

to update their expectation of ®. Following DSSW (p. 386), we assume that o = 1/(2vy03) > B.



This assumption ensures that the demand functions of rational speculators and passive investors
are identical, once both have observed the signal. Informed rational speculators are the only utility
maximizing agents in the model. Their preferences are represented by the mean-variance utility
function 4 — vo? (v > 0)), where u and o2 are the mean and the variance of their final wealth,

respectively.

Definition: Prices p; (t = 0,1,...,T) and demands D,{ (t=23,....,T) and D} (i = r,e, t =
0,1,...,7) are an equilibrium if

— D,{ satisfies (1) for allt =2,3,...,T and Df satisfies (2) for allt =0,1,...,T,

— D (t=0,1,...,T) is the time-consistent solution to the mean-variance utility maximization
problem, given current information, and

— the market for the risky asset clears:

DI +uDl+(1—p)Df =S, t=0,1,...,T. (3)

It is understood that prices and demands are random variables (i.e., functions of ®) starting at
date T" (or T°, if 4 = 0). The model analyzed by DSSW is the special case with 7' =2, T" = 1,
T7¢=2,v=0,S=5=0,P € {—¢,0,0} (¢ > 0), and @ distributed normally. In our preferred
interpretation of the model, the sum of the lower bounds of the supports of ® and 6 is no less than
—wv, so that the asset’s payoff is non-negative with certainty, and similar assumptions ensure that
equilibrium prices are non-negative and arbitrage-free. Our preferred interpretation also entails
that all agents hold initial wealth that is large enough to ensure non-negative consumption with
certainty. As our preferred interpretation rules out normality of 6, we must not interpret the mean-
variance utility function as an equivalent representation of a von Neumann-Morgenstern utility

function as in DSSW (p. 384).1

3 Investment behavior

Let W] denote a rational speculator’s wealth at the beginning of ¢t (= 0,1,...,7 +1). Initial wealth

W§ (> 0) is exogenous. Final wealth is
T-1

Wiy =W+ (prs1 —pr)Di + (0 +®+60 —pp)Dy, t=0,1,...,T —1. (4)
t'=t

'LW demonstrate that the use of mean-variance utility gives rise to equilibrium prices which are not arbitrage-free
in De Long et al.’s (1990b) related model if, e.g., there is a lower bound on prices. We show below that their argument

does not invalidate the present analysis (see footnote 4).



The second term on the right-hand side is the sum of the capital gains at dates ¢’ + 1 through
T. The final term on the right-hand side is the return on the date-T" asset holdings. The rational
speculators face a problem of dynamic mean-variance portfolio selection. The solutions are found
recursively. The properties of the solution needed in the subsequent analysis are summarized in
Lemmas 1-3.2

The first result states the well-known solution to the static final date mean-variance utility maxi-
mization problem. As emphasized by DSSW (pp. 385-6), the presence of dividend risk at date T+ 1
implies that the date-T" demand is bounded.

Lemma 1: A rational speculator’s demand at T is

Dy =a(v+® —pr).

The next result states that if rational speculators can forecast the next-period asset price accurately,
then arbitrage drives the current price to its anticipated next-period value. Let E] denote the ex-
pectations operator conditional on rational investors’ date-t information and O’;?_H‘t the conditional

variance of the date-t + 1 price level.

Lemma 2: If O';?_H't =0 for somet (=0,1,...,T — 1), then

Pt+1 =Dt

in equilibrium, and the demand Dy is indeterminate.

Proof: Suppose 0”2 |, = 0 and p;.1 # p; for some t. Then, from (4), a rational speculator can

pralt
achieve any level of final wealth W7, with certainty by choosing D} = (W7, — W{)/(piy1 — pt)
and D}, =0 fort' =t+1,t+2,...,T. A solution to his date-¢ utility maximization problem does
not exist. So ps+1 = pr must hold in equilibrium. From (4), W7 is then independent of Dj, so D}

is indeterminate. ] ‘

The final result will be useful in determining the asset price in the date before rational investors

observe the signal.

Lemma 3: Suppose rational speculators have no posterior information about ® at some t (=
0,1,...,T—1), so that their subjective probability distribution for ® is the unconditional distribution.
Then in an equilibrium with py = v+ 1+ N)® # =t+1,t+2,...,T) for some X\ (# —1), they

2There is no tractable “cookbook approach” to multi-period mean-variance optimization (cf. Li and Ng, 2000, and

Steinbach, 2001, Section 2).



choose
Dl — Eipty1 — pr . U — Pt

t = 2 7"
20,7 27(1 4+ N)20g,

Proof: From Lemmas 1 and 2 and the supposition that py = v+ (14+A)® for ¢’ =t+1,t+2,...,T,
(4) becomes

W{“-{—l = Wtr + (thrl - pt)Df — Oé)\@((g — )\(I))
Since @ is independent of @,

E{Wi.y =W + (E{pes1 — pt) D} + aX’03.

Using pi+1 = v+(14+))®, independence of #, and the assumption that & is distributed symmetrically
around zero (so that E®3 = 0), the conditional variance of final wealth Jﬁ;ﬂ‘t = Ef(Wi,, —
EfW7_1)? can be written as (see Appendix A.1)
2 2 2 2( 2 2 2 2
O—TWTT’-&-I‘t = (f;t+l|t (D))" + (aN) (Jgaq) + A O'q>2) )
So maximization of mean-variance utility EyWr,,; — ’ya%;ﬂ‘ , is equivalent to maximizing
(Efpit1 — pi) D} — 072
for this problem. I

+1|t(D[ )2. The expression for D} in the lemma is the first-order condition

4 Stabilizing rational speculation

Following DSSW (p. 388), we analyze the impact of rational speculation on equilibrium prices by
comparing prices with and without rational informed traders (i.e., with 4 > 0 and pu = 0). We
first consider three special cases of the model, in which different price patterns with or without
overreaction and with stabilizing, destabilizing, or neutral rational speculation occur. We then turn
to the general case to investigate which properties of the examples are responsible for the different
price patterns.

We start with the special case of the model with 7" = 1, T° = 2, and T" = 3. This is an example

of stabilizing speculation.

Theorem 1: Let T" =1,T¢=2,T =3, and B2 = 0. For u > 0, the unique equilibrium asset price
levels are pg = v and

pt:v"i_(b:p*(q))v t=1,2,3. (5)

Proof: The model is solved backwards. At date 3, from (2) and Lemma 1, D} = a(v + ® — p3) for
i = r,e. Together with (1), 51 = 3, B2 = 0, and (3), we obtain

a(v+®—p3)+6+Bp2—p1) =S (6)



Rational speculators learn ® at date 1. So from Lemma 2, p; = po = ps. From (6), it follows that

S—9
pp=v+®——, =1,23. (7)
o
Setting S = ¢ yields (5). As of date 0, neither informed nor passive traders have posterior infor-
mation about ®. From (5), p = v+ (1 + A)® (¢t = 1,2,3) for A = 0, so Lemma 3 applies, and
Dy = (Eyp1 — po)/ (2’y0;f|0). From (5), Egp1 = v and the conditional price variance is a;f
Hence, D, = o/(v — pg), where o/ = 1/(2y03). Substituting D}, D(J; =0, and D§ = a(v — pp) into

— 42
|O—O-q>.

(3) yields pp = v. I

Theorem 1 says that the asset price equals the expected value of the asset’s payoff conditional
on the rational speculators’ current information. The risk premium for holding the risky asset is
zero because the risk averse rational traders do not bear any risk. This is true for ¢t = 0,1, 3 since
Di =5 — D{ =S5 —0 =0 and for t = 2 since p3 = pa. Note, however, that this is due to the
assumption S = §. For § > ¢, from (7), a discount (S—9)/« is required in order to make the rational
speculators and passive investors willing to hold the amount S — § of the asset not held by the
positive feedback traders. Following LW (Section II), the discount (S —d)/a should be interpreted as
fundamental risk, even though it depends on the parameter ¢ from the feedback traders’ demand
function, because the feedback traders’ demand has an impact on how much consumption risk
rational traders have to bear in equilibrium. Keeping this in mind, we set S = § from now on and

define:

Definition: Suppose ppr_1 = v for p > 0. Prices overreact (there is overreaction) if p; > p*(®)
for ® >0 and p; < p*(®) for & <0 for some t > T". Prices overreact for =0 if pre_1 = v and
[pt — p*(®)]® > 0 for some t > T*€.

Definition: Suppose prr_1 = v for 4 > 0 and pre_1 = v for up = 0. Rational speculation is
stabilizing (or destabilizing or neutral) if max;>7r p; for p > 0 is less than (or greater than or

equal to, respectively) maxysre py for =0 when ® > 0 (and vice versa when ® < 0).

We also notice that, despite the fact that mean-variance optimizing choices do not necessarily
exploit arbitrage opportunities, the equilibrium prices are arbitrage-free. With one risky and a safe
asset, arbitrage-freeness requires that the returns of the two assets cannot be ranked according to
first-order stochastic dominance. This condition is satisfied, since at the only date with uncertainty
(i.e., at t = 0), the price of the risky asset can rise or fall. The conditions for non-negativity of
prices and final wealth are in Appendix A.2.

Next, consider the model without informed rational speculators (i.e., for u = 0).
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Figure 1: Price of the risky asset when ® > 0: stabilizing (left panel), destabilizing (middle panel),

and neutral (right panel) rational speculation

Theorem 2: Let T" =1, T¢ =2, T = 3, and B2 = 0. For u = 0, the unique equilibrium asset

prices are
a+f

po=p1=v, pp=p(P), p3=v+ P.

Proof: pg = p1 = v follows from D,{ =0 (t=0,1), (2), and (3). At date 2, passive investors learn ®,
and their demand is D§ = a(v + ® — p2). The feedback traders’ demand is D} = 0. Market clearing
implies py = v + ®. At date 3, the demands are D§ = a(v + ® — p3) and Dg = § + BP, respectively,

and market clearing yields the final equality in the theorem. I

The left panel of Figure 1 illustrates the price dynamics in response to a positive shock & > 0
with and without informed rational speculators, i.e., with © > 0 and u = 0 respectively. Rational
speculation ensures that the asset price is constant subsequent to the arrival of the signal and
it precludes an increase above the asset’s expected payoff when the information arrives. In the
absence of rational speculators, the price increase at date 2, when the passive investors receive the
positive signal, causes positive feedback trader demand at date 3, thereby driving the price above
expected payoff. So there is overreaction in the absence of rational traders, and rational speculation

is stabilizing.

5 Destabilizing rational speculation: the DSSW model

This section considers the DSSW model.

Theorem 3: Let T" =1 and T° =T = 2. For pu > 0, the equilibrium prices are
+ = o (8)
= = =V _— .
Po , D1 b2 o B

For =0, the equilibrium prices are

po=p1 =0, p2=p(P). 9)



Proof: First, let g > 0. From Lemma 1, Dj = (v + ® — p2). Using (1) and (2), the final-date

market clearing condition becomes

a(v+ @ —p2) + B(p1 — po) = 0. (10)
Since type-r investors learn ® at date 1, Lemma 2 implies ps = p;. From (10),

p1 =

a(v+ @) — Bpo
a—p '

Suppose p1 = v + (1 + \)® for some A, so Lemma 3 yields Dj = (Ejp1 — po)/(Q’)/O';?‘O). Inserting

(11)

the expressions for E{p; and 0’;?‘0 implied by (11) yields Dy = (o — 8)a/ (v — po)/cv. Together with
Dg =0 and D§ = a(v — pp), it follows from (3) that py = v. The validity of (8) follows from (11)
and p; = pa, thereby confirming that p; = v + (1 + \)® for A = 8/(a — 3).2

For = 0, using (1) and (2), the market clearing condition (3) becomes a(v — p;) = 0 for ¢t = 0,1
and a(v + ® — pg) = 0, which immediately yields (9). I

There is overreaction if, and only if, rational traders are present. So rational speculation is desta-
bilizing here (see the middle panel of Figure 1). Rational traders buy assets from passive investors
at date 1 and unload their holdings to feedback traders and take a short position at date 2. The
date-2 price level has to exceed the asset’s expected payoff by the amount necessary to compensate
rational traders for the risk associated with the short position. This neatly formalizes the story how

rational speculators benefit from market overreaction.*

3Tt can be shown that the equilibrium prices are unique. To do so, we have to allow for the possibility that p; # v
for & = 0. This makes the use of a generalized version of Lemma 3 necessary. For the sake of brevity, we skip the
proof.

4LW’s argument that equilibrium prices are not arbitrage-free in De Long et al.’s (1990b) model if, e.g., there is a
lower bound on prices does not apply here. In De Long et al. (1990b), the interest rate on the safe asset is r (> 0) and
the price p; of the risky asset is i.i.d. It is easy to see that this generates an arbitrage opportunity if the support of p;,
[p, P] say, is bounded. Investing p: borrowed dollars in the risky asset yields the payoff r + psy1 — (1 +7)ps. This is an
arbitrage opportunity if p; < (r+ ]_)) /(147). Conversely, selling the risky asset short in ¢ and investing the proceeds in
the safe asset yields (147)ps— (r+pe+1) in ¢+1, and this is an arbitrage opportunity if p: > (r+p)/(1+r). The absence
of arbitrage opportunities at all equilibrium price levels thus requires p > (r +p)/(1 +r) and p < (r +p)/(1 + r),
ie., p>1>p,a contradiction. The reason why LW’s argument does not apply here is that the model considered is
not a “DSSW-style model” in the sense of their Definition 2 (LW, p. 240), i.e., aggregate consumption and the asset
price are not not perfectly correlated (cf. LW, Proposition 1, p. 241). To the contrary, aggregate consumption is zero

at all dates at which the asset is traded and is, therefore, uncorrelated with the asset price.



6 Neutral rational speculation

The final special case we consider is 7" = 1 and T°¢ = T = 3. This model can be interpreted as the
DSSW model with one additional date, in which “nothing happens” before the final date. This is
an example of neutral rational speculation: the amplitude of the price change does not depend on

when the news arrive (see the right panel of Figure 1).

Theorem 4: Let T" =1, T =T = 3, and 82 = 0. For pu > 0, the unique equilibrium prices are
po =v,p1 = p2 = p3 = p*(P). (12)
For =0, the equilibrium prices are
po=p1=p2=v,p3=p (). (13)

Proof: The validity of (12) for p > 0 and of (13) for u = 0 follows from the same reasoning as in

the proofs of Theorems 1 and 3, respectively. I

7 The general case

We have seen that there may be overreaction in the presence of rational speculators or not and
that rational speculation can be stabilizing, destabilizing, or neutral. What, then, are the char-
acteristics of the special cases considered responsible for the occurrence of the respective cases?
The distinguishing feature of the model with destabilizing rational speculation in Section 5 is that
information arrives at the penultimate trading date, so that positive feedback trader demand is
high at the final date, and rational speculators have to be compensated for the risk associated
with the short position they have to take in order for the market to clear. The present section
demonstrates that, more generally, overreaction occurs in the presence of rational speculators if the
feedback traders’ demand at the final trading date reacts positively to the price change at the date
when information about the risky asset’s payoff arrives in the market. Moreover, it is one single
feedback parameter, viz. Sp_pr, that determines the degree of overreaction.

Consider the general model outlined in Section 2 with 7" > 2 and 3; > 0.

Theorem 5: For p > 0, the equilibrium prices are

pe=wv, t=0,1,...,7"—1, (14)
and
=t — B, t=T",T"+1,...,T. (15)
a— Br_rr



Proof: Market clearing at date T" implies

T—1
av+®—pr)+ Y BApr_ =0. (16)
=1
Using Lemma 2 iteratively yields prr = prry1 = ... = pr. Suppose ppr = v+ (1 4+ A)®. Then, from

Lemma 3, the rational traders’ asset demand at 7" — 1 is D%, _; = (v — prr—1)/[2v(1 + \)?03).
Again applying Lemma 2 iteratively yields pg = p1 = ... = ppr_1. So there is no positive feedback
trading before 7" + 1, and the date-T" — 1 market clearing condition becomes (v —prr—_1)/[27(1+
N202]4 (1 —p)a(v—prr—1) = 0, so ppr—1 = v. This proves (14). Substituting prr = pr, prr—1 = v,
and App_; =0 for [ # T — T" into (16) proves (15). I

The fact that there is overreaction in the DSSW model (Section 5) but not in the models of Sections
4 and 6 is that Sp_pr = 8 > 0 in the former, whereas Sr_r» = B2 = 0 in the latter. In the absence
of feedback trading (i.e., if 5y = 0 for all [ = 1,2,...,t — L at all t = 2,3,...,T), (15) becomes
pr =p*(®) for t =T, T" 4+ 1,...,T, and the proof is in essence Tirole’s (1982, Proposition 3, pp.
1172-3) backward induction argument for a finite investment horizon.

Let B and ff denote the first and the last strictly positive lag parameter in (1), respectively
(1 < L<L<T-—1). There is no overreaction if either T —T" > L or T — T" < L. The former
condition, i.e., T —T" > L, is satisfied if the interval between the arrival of payoff-relevant news
and the realization of the payoff exceeds the horizon of the feedback effects. This casts doubt on
whether the model helps explain long-term price rallies, such as the conglomerate boom of the
1960s, the REIT boom of the 1970s (DSSW, p. 380), the dotcom boom of the 1990s, or the housing
booms of the late 1990s and early 2000s. If rational traders anticipated the booms several years in
advance, one has to argue that price increases several years ago affect positive feedback traders’
demand. Otherwise the price would have been driven up to the expected payoff immediately after
the positive news had arrived and remained constant then. The latter condition, i.e., T —T" < L,
is satisfied when the rational speculators’ informational advantage is sufficiently short-lived so that
there is no time left for positive feedback effects before payoffs are realized. This casts doubt on
whether the model helps explain excess volatility at very short horizons.

How strongly the asset price overreacts, if it overreacts, depends on the magnitude of Sp_7r. There
is little overreaction if Sr_pr is small, so that o/(a — Sr—7r) is close to one and the price level in
(15) is close to p*(®). It seems sensible to assume that the 3;’s are small, if not zero, for [ large. This
reinforces the argument that the model’s contribution to the explanation of long lasting booms is
limited. Viewed from another angle, let D,{ = § for some t, and consider a sequence of asset price

increases Ap (> 0) over 7 (> L) dates. Let L =1 and L < 7. From (1), the increase in the feedback

10



traders’ asset demand is ~
L

Dl D] =AY 5
=1

. . . . f f
In order to explain a given increase in demand D;,__ — Dj,

the individual feedback parameters
B; have to be smaller, the larger L. If, for instance, the strictly positive feedback parameters are
uniform, then they are inversely proportional to L: DQT — D{ = ApLBfor By =8 (1=1,2,...,L).
Generally, if price increases further back in the past have a weaker impact on demand (i.e., if §; is

a decreasing sequence), then the earlier information arrives, the lower the degree of overreaction.

Theorem 6: Suppose 5; = 3 for alll =1,2,...,T — 1. For u = 0, the unique equilibrium prices

are

pr=v, t=0,1,...,7°—1, (17)
and

t /8 t'—T¢

pp=v+ Y (—) d, t=T°T°+1,...,T. (18)
Q@

Te

Proof: For t =0,1,...,T°¢ — 1, passive investors’ demand is Df = a(v — p;), and feedback traders’

demand is D{ = §. Market clearing implies (17). For ¢t = T¢,T¢ + 1,...,T, the market clearing

condition (6) can be expressed as

t=T¢

1
pt:U"i"I)‘i'a Z BApt—i.
=1

The validity of (18) follows upon substituting for p; and the Ap;_;’s into this equation. I

Clearly, p; > p*(®) and p; < v + 322 e (B/a)! " T°® = v+ a® /(o — B) for & > 0 and t > T*.

8 Conclusion

We have no doubt that the various kinds of feedback trading described by DSSW (Section I) are an
important determinant of asset price volatility. The analysis in this paper raises doubts, however,

about whether the model contributes significantly to its explanation.

Appendix A.1: Conditional variance of final wealth

In this Appendix, we derive the expression for the conditional variance of final wealth used in

Section 3:

r2 - r r YT 2
Owr lt = Ef (Wi — EfWrp)

11



= E/ {(per1 — Elpen1)? (D))

+(aN)? [6® — A (@2 - E{qﬂ)r

= E] {(le — E{pi+1)D; — aX [9@ —A (q)Q B E{@Qﬂ }2
{

—20\ (P41 — Ef pes) [9@ — A (‘I’Q - E{(DQ)} Dg}
=(14+N)®

= B} (pes1 — Efpen)*] (D})?

+(aN)2E] [(0@)2 TN (97 - 59?)” - 2000 (92 - E{@Q)Q]

~20A(1+A) [E] (602) - AE] (9* — @ E®?)| D}

= B} (pes1 — Efpen)*] (D})?

:0.7‘2
pey1lt

—i—(oz)\)Q{ B(09)° + X B (8* ~ £8%)° 2\ E [ch = E¢>2)2] }
- " /)

2.2

=040% 2022 -0
2 3 2 r
—2a(1 + )\){ E (00?) —A[E(I) ~ (B0) (E® )HDt
% =0 =0
= 0;3+1\t (DN)? + (aX)? (agaé, + )\20<2bg) .

Appendix A.2: Non-negativity conditions

For the sake of convenience, let S = §. Further, let § and 6 denote the lower and upper bounds of
the support of @, respectively, and analogously for ®.

Non-negativity of p*(®) for all ® requires & > —v. This is implied by the condition that the asset
has a non-negative payoff with certainty (i.e., 46 > —v). The condition implies & > —[(a—f)/a]v
and, hence, p**(®) > 0 for all ®.

Generally, since D} does not affect wealth at dates with p; = psy1 and D} is bounded and inde-
pendent of W} at dates with price uncertainty, final wealth rises one-to-one with initial wealth and
is non-negative with certainty if W{ is sufficiently large. For instance, in the model with T" = 1,
T¢ =2, and T = 3, for u = 0, the feedback traders hold the total supply of the risky asset both
at the date before the price changes and at the final trading date (i.e., D{ = Dg =06 =29), so the
non-negativity condition for informed rational and passive traders is satisfied: W} = W¢ > 0
(t = rye). Using py —pp = ® and v + & + 0 — p3 = 6, the positive feedback traders’ final
wealth is W = W({ + (® + 0)6. Non-negativity with certainty at the equilibrium prices requires
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w/ > —(® + 8)d. The final wealth levels with y = 0 are
0

Wf_W({JrafBa@Jr(e-%)q>(5+aa_ﬁﬁé>

and

Wi=Wi+ <—QLEB@+9> <—a0‘_ﬁﬂq>>, i=re.

As said above, final wealth is non-negative if initial wealth is sufficiently large.
Similar assumptions ensure non-negativity of prices and final wealth in the other variants of the

model.
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